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INTRODUCTION5

Entanglement witnesses and positive maps are useful in detecting entanglement. For this6

purpose, positive maps are generally a more powerful tool than individual entanglement7

witnesses. For example, the transpose map detects entanglement of all entangled states8

in M2 ⊗ M2 or M2 ⊗ M3, while this is not the case for a single entanglement witness.9

However, entanglement witnesses are observables, hence can be implemented physically,10

while positive maps are not physically realizable unless they are completely positive. This11

led P. Horodecki37, see also Ref. 38, to define the structural physical approximation (SPA)12

of a positive map to be a completely positive map formed by mixing the original map with13

as small an amount as possible of the completely depolarizing map. Mixing in the latter can14

be thought of as adding a minimal amount of a neutral disturbance, whose effects can be15

compensated for, since the completely depolarizing map takes every state to the maximally16

mixed state.17

Lewenstein, Kraus, Cirac, and Horodecki47 singled out those entanglement witnesses18

that are the most efficient in detecting entanglement, and called them optimal entanglement19

witnesses. Later Korbicz, Almeida, Bae, and Lewenstein41 conjectured that the SPA of an20

optimal positive map would be entanglement breaking. Entanglement breaking maps have21

a particularly simple form which makes them straightforward to implement. Examples have22

been found by many investigators supporting this conjecture. Recently the conjecture was23

settled in the negative direction.24

In this review we will begin by discussing background relevant to the SPA conjecture.25

We first review well known correspondences of linear maps from A1 to A2 with operators26

in A1 ⊗ A2. We then discuss basics regarding entanglement witnesses, and the notion of27

decomposability of positive maps and entanglement witnesses. Finally we discuss optimality28

of entanglement witnesses, and the structural physical approximation of a positive map.29

Then we state the structural physical approximation conjecture. We discuss the variety30

of examples found that support that conjecture. We then describe Ha and Kye’s example29
31

of an indecomposable entanglement witness that violates the SPA conjecture, and sketch32

their proof. Independently, in the same family of optimal entanglement witnesses studied33

by Ha and Kye, Størmer71 by different methods proved that there is a witness that violates34

the SPA conjecture, which we also describe. Finally we discuss Chruściński and Sarbicki’s35
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example18 of a decomposable entanglement witness that violates the conjecture.36

We refer the reader interested in further background on entanglement witnesses and37

positive maps to the survey articles of Chruściński and Sarbicki19, of Kye44, and the book38

of Størmer70.39

Notation40

We begin by fixing some notation and reviewing basic terminology. Let HA and HB

denote finite dimensional Hilbert spaces, let A1 = L(HA) denote the linear operators on

HA, A2 = L(HB), and let L(A1,A2) be the set of linear maps from A1 to A2. We identify

A1⊗A2 with L(HA⊗HB). We will often identify HA with Cm and HB with Cn, and denote

the standard basis of Cm by e1, . . . , em. When convenient, we will identify A1 with Mm and

A2 with Mn. We view A1, A2, and A1⊗A2 as Hilbert spaces with the Hilbert-Schmidt inner

product 〈X, Y 〉 = tr(Y †X), where † denotes the Hermitian adjoint (or complex conjugate

transpose as a matrix). For example, on A1 the Hermitian adjoint is given by

〈Wx, y〉 = 〈x,W †y〉 for all x, y ∈ HA.

Similarly, if Φ ∈ L(A1,A2) then the dual map Φ∗ : A2 → A1 is the linear map satisfying

〈X,Φ∗(Y )〉 = 〈Φ(X), Y 〉 for all X ∈ A1, Y ∈ A2,

The transpose maps on A1, A2, and A1 ⊗ A2 will be denoted by t. We denote the partial41

transpose map I ⊗ t by Γ. We note that t∗ = t and Γ∗ = Γ.42

A state on H is a positive (semi-definite) operator ρ in L(H) with tr ρ = 1. An operator43

A on HA⊗HB is separable if it can be expressed as a finite sum A =
∑

iBi⊗Ci with Bi ≥ 044

and Ci ≥ 0. It follows that if ρ is a state on HA ⊗HB, then ρ is separable iff it is a convex45

combination of product states: ρ =
∑

i tiσi ⊗ τi. A state is entangled if it is not separable.46

A linear map Φ : A1 → A2 is positive if Φ takes positive semi-definite operators on HA47

to positive semi-definite operators on HB. A map Φ ∈ L(A1,A2) is defined to be completely48

positive if Ik ⊗ Φ : Mk ⊗ A1 → Mk ⊗ A2 is positive for all k, where Ik is the identity map49

on Mk. As pointed out by Kraus42, a physical transformation of quantum systems should50

be completely positive, so such maps play a central role in quantum information theory.51

If V ∈ L(HB, HA), we denote by AdV the map in L(A1,A2) given by

AdV (X) = V †XV.
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It is clear that AdV is a positive map, and in fact is completely positive since I ⊗ AdV =52

AdI⊗V . Every completely positive map Φ is a sum of such maps, Φ =
∑

i AdVi . (This is53

often called a Kraus decomposition of Φ, cf. Ref. 43. A proof can be found in Refs. 8 and54

42.)55

Finally, we single out the following notion that will play an important role in our discus-56

sions.57

Definition. An operator W in A1 ⊗A2 is block positive if 〈W (x⊗ y), x⊗ y〉 ≥ 0 for all x in58

HA, y in HB.59

Correspondence of linear maps and operators60

We review the Choi-Jamio lkowski isomorphism, which is an indispensable tool in working61

with positive and completely positive maps. We denote by Eij the standard matrix units in62

Mn, i.e. Eij = eie
∗
j .63

Definition. If Φ is a linear map from A1 to A2, then the Choi matrix CΦ in A1 ⊗A2 is

CΦ =
∑
ij

Eij ⊗ Φ(Eij).

If we define64

P+ =
∑
ij

Eij ⊗ Eij, (1)

then 1
m
P+ is the pure state associated with the maximally entangled vector ψ+ = 1√

m

∑
i ei ⊗ ei,65

and CΦ = (I ⊗ Φ)P+, where I is the identity on A1.66

The map that takes Φ to CΦ is readily seen to be a linear isomorphism from L(A1,A2)67

to A1 ⊗ A2, and is known as the Choi-Jamio lkowski isomorphism. It has the following68

properties. (Property (i) is due to Jamio lkowski40 (who proved a slightly different but69

equivalent version), while (ii) is due to Choi8).70

Theorem 1. Let Φ be a linear map from A1 to A2.71

(i) Φ is positive iff CΦ is block positive.72

(ii) Φ is completely positive iff CΦ is positive semi-definite.73

For further discussion of this correspondence and related correspondences, see Refs. 48,74

50, and 53.75
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Detecting entanglement76

Entangled states are needed for most applications of quantum information theory, so it77

is important to be able to detect whether a given state is entangled or separable. We now78

review two means of entanglement detection: entanglement witnesses, and the positive maps79

criterion.80

Entanglement witnesses81

Two different necessary and sufficient conditions for separability were given by the82

Horodeckis34. For the first criterion, they applied the Hahn-Banach theorem to show that a83

state ρ on HA ⊗HB is separable iff tr(ρX) ≥ 0 for all block positive X. Thus if ρ is a state84

and W is block positive with tr(Wρ) < 0, then ρ is entangled, so the observable W has in85

effect detected the entanglement of ρ. This led Terhal74 to the following definition.86

Definition. A block positive observable that detects entanglement of at least one state is an87

entanglement witness. Thus an entanglement witness W on HA ⊗ HB is a block positive88

operator that is not positive. We say W is normalized if trW = 1. (As shown by Lewenstein89

et al.47, any nonzero block positive operator always has strictly positive trace, so we can90

always normalize a block positive operator.)91

Theorem 2. (Ref. 34) A state ρ on HA ⊗HB is entangled iff tr ρW < 0 for some entan-92

glement witness W . Thus every entangled state can be detected by an entanglement witness.93

Now we make use of the Choi-Jamio lkowski isomorphism. Note that if Φ is a positive94

map that is not completely positive, then CΦ is block positive but not positive, so Φ 7→ CΦ95

is a 1-1 correspondence of positive maps that are not completely positive with entanglement96

witnesses.97

For an example, let the flip operator V : Cd ⊗ Cd → Cd ⊗ Cd be the linear operator98

satisfying V (x⊗ y) = y⊗ x. Then 〈V (x⊗ y), (x⊗ y)〉 = |〈x, y〉|2 ≥ 0, so V is block positive.99

The flip operator is an entanglement witness that gives a necessary and sufficient condition100

for detecting entanglement of the family of Werner states76.101
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The positive maps criterion102

A simple but very useful criterion for separability was proposed by Peres54. Let t : A2 →103

A2 be the transpose map. If ρ is a separable state on HA ⊗HB, then (I ⊗ t)ρ will also be104

positive, and the property that ρΓ = (I ⊗ t)ρ ≥ 0 is called the positive partial transpose105

(PPT) property. A positive operator with positive partial transpose is called a PPT operator,106

and in particular a state with positive partial transpose is called a PPT state.107

Earlier (before the notion of separability had been defined) Choi9 raised the question of108

determining when an operator with the PPT property is a sum
∑

iAi⊗Bi with Ai ≥ 0, Bi ≥109

0, and gave a 3× 3 example where this is not the case.110

The PPT criterion can be generalized by replacing the transpose map by any positive111

map. Let A1 = L(HA), A2 = L(HB), A3 = L(HC), and let Φ : A3 → A2 be a positive map.112

(Typically HC = HA so A3 = A1, or HC = HB so A3 = A2.) If ρ is a separable state on113

HA⊗HB then (I⊗Φ∗)ρ ≥ 0. If this fails for some positive map Φ then ρ must be entangled.114

Definition. Let A1 = L(HA), A2 = L(HB), A3 = L(HC), and let Φ : A3 → A2 be a115

positive map. If ρ is a state on HA ⊗HB and if (I ⊗Φ∗)(ρ) 6≥ 0, then we say that Φ detects116

entanglement of ρ.117

The Horodeckis34 showed that every entangled state can be detected by a positive map,118

by proving the following theorem.119

Theorem 3. (Positive Maps Criterion) A state ρ on HA⊗HB is separable iff for all positive120

maps Φ : A1 → A2, (I ⊗ Φ∗)ρ ≥ 0.121

Using results on decomposability of positive maps (discussed in the next section) and the122

positive maps criterion, the Horodeckis showed that the PPT property is a necessary and123

sufficient condition for separability in M2⊗M2, M2⊗M3, and M3⊗M2, but is not sufficient124

for Mm ⊗Mn with mn > 6, cf. Ref. 34.125

Horodecki, Smolin, Terhal, and Thapliyal39 showed that the PPT property implies sep-126

arability for any state of rank two or less. Thus if x is an entangled unit vector and Px is127

the corresponding projection, it follows that Px doesn’t have the PPT property. Therefore128

P Γ
x 6≥ 0, and since P Γ

x ≥ 0 on separable states, each P Γ
x is an entanglement witness.129

Let W be any entanglement witness in A1 ⊗ A2, and Φ : A1 → A2 the positive map

such that W = CΦ. Generally Φ is a more powerful detector of entangled states than W in
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the sense that it detects every state detected by W and perhaps many more. Indeed, if CΦ

detects entanglement of a state ρ then

0 > tr(CΦρ) = tr((I ⊗ Φ)P+)ρ = trP+((I ⊗ Φ∗)ρ),

so Φ also detects entanglement of ρ. Furthermore, if X is any block positive operator then130

WX = (I ⊗ Φ)X is block positive, and all states detected by WX are also detected by the131

positive map Φ. Thus Φ detects all states detected by the family WX as X ranges over block132

positive operators.133

Clearly the transpose map t : Mn → Mn detects precisely the non-PPT states on Mm ⊗134

Mn. For m = n = 2 the transpose map detects all entangled states, while this isn’t true for135

the associated entanglement witness Ct = V (where V is the flip map V (x⊗ y) = y ⊗ x).136

Decomposability of positive maps and entanglement witnesses137

Definition. A positive map Φ : A2 → A1 is decomposable if it can be written in the form138

Φ = Φ1 + Φ2 ◦ t where Φ1,Φ2 are completely positive. An operator X ∈ A1 ⊗ A2 is139

decomposable if there are positive operators P,Q with X = P +QΓ.140

From the definition of the Choi matrix, we have Ct◦Φ◦t = Ct
Φ. Thus CΦ ≥ 0 iff Ct◦Φ◦t ≥ 0,141

so t ◦ Φ ◦ t is completely positive iff Φ is completely positive. Since Φ ◦ t = t ◦ (t ◦ Φ ◦ t), it142

follows that decomposable maps can also be described as those of the form Φ1 + t ◦ Φ2 for143

Φ1,Φ2 completely positive.144

Decomposable operators are precisely the operators associated with decomposable posi-

tive maps under the Choi-Jamio lkowski isomorphism. To see this observe that

CΦ1+t◦Φ2 = CΦ1 + Ct◦Φ2 = CΦ1 + CΓ
Φ2
.

By results of Woronowicz77 and Størmer65, if dimHA dimHB ≤ 6 all positive maps are145

decomposable, but this is not true in higher dimensions.146

Examples of decomposable and indecomposable maps147

The transpose map t : Md →Md is a positive map which is evidently decomposable. The

reduction map R : Md →Md given by

R(ρ) = (tr ρ)I − ρ
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is a positive map defined by the Horodeckis33. By the positive map criterion, if ρ is sep-148

arable then (I ⊗ R)ρ ≥ 0, and this is called the reduction criterion for separability. The149

corresponding entanglement witness is CR = I ⊗ I − P+. Since CΓ
R = I ⊗ I − V , where V150

is the flip map, and I ⊗ I − V ≥ 0, then CR is decomposable, and so the reduction map is151

decomposable.152

The first explicit example of an indecomposable positive map was the Choi map on M3,

defined by

Φ(X) =


x11 + µx33 −x12 −x13

−x21 x22 + µx11 −x23

−x31 −x32 x33 + µx22


This was shown by Choi and Lam10–12 to be indecomposable (and extremal in the cone of

positive maps) by an argument involving the associated biquadratic form

F (x, y) = 〈Φ(x†x)y, y〉 for x, y ∈ Cm.

We will discuss in Theorem 5 below a more direct proof due to Størmer.153

Breuer5 and Hall32 independently defined what are now called the Breuer-Hall maps Λd,

on M2d that generalize the reduction map. Let U be an antisymmetric unitary on C2d. Then

ΛU
d (ρ) =

1

2d− 2
((tr ρ)I − ρ− UρtU †),

and Breuer and Hall showed each map ΛU
d is positive and indecomposable.154

In Ref. 66 Størmer considered unital projections (positive maps P of Md into itself

such that P 2 = P and P (I) = I), and described when they were completely positive or

decomposable. This was used by Robertson to create the first example of an indecomposable

positive map on M4. He also showed that what is now called the Robertson map is extremal

in the cone of positive maps. The Robertson map Φ : M4 →M4 is given by

Φ(xij) =


x33 + x44 0 x13 + x42 x14 − x32

0 x33 + x44 x23 − x41 x24 + x31

x31 + x24 x32 − x14 x11 + x22 0

x41 − x23 x42 + x13 0 x11 + x22
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Duality of cones155

Let V1, V2 be finite dimensional real vector spaces with a pairing 〈·, ·〉 (i.e., a bilinear form156

on V1 ⊗ V2 such that 〈x, y〉 = 0 for all x ∈ V1 implies y = 0, and 〈x, y〉 = 0 for all y ∈ V2157

implies y = 0.) One example of such a pairing is 〈X, Y 〉 = trXY for X, Y Hermitian in158

A1⊗A2, which pairs the set of Hermitian operators (A1⊗A2)h with itself, and this will be159

the pairing understood unless otherwise mentioned.160

A nonempty subset C of a real vector space V1 is a cone if it is closed under multiplication

by nonnegative scalars, and under sums. If we have a non-degenerate pairing 〈·, ·〉 of V1 and

V2, and if C is a cone in V1 its dual cone is

C∗ = {Y ∈ V2 | 〈X, Y 〉 ≥ 0 for all X ∈ C}.

(This is the negative of the polar cone of C.) For a closed cone C, we have C∗∗ = C, and if

C1, C2 are closed cones,

(C1 ∩ C2)∗ = C1 + C2 and (C1 + C2)∗ = C∗1 ∩ C∗2 .

We will see that duality of cones is useful in checking decomposability, and more generally161

in working with positive maps and block positive maps.162

If K is any convex subset of a real vector space, then the set of non-negative multiples of163

elements of C is a cone, called the cone generated by K. We will make frequent reference to164

the cones generated by separable states and the cone generated by PPT states, and slightly165

abusing language we will refer to these as the cone of separable states and the cone of PPT166

states.167

By the definition of block positive operators, the dual of the cone of separable states is the168

cone of block positive operators, and hence since the cone of separable states is closed, these169

cones are dual cones of each other. Decomposable operators and the cone of PPT states also170

are dual cones (see the next lemma). Each cone C of positive maps that corresponds under171

the Choi-Jamio lkowski isomorphism to one of the cones of decomposable, PPT, separable,172

positive, or block positive operators has the property that if Φ is in the cone C, and Ψ is173

completely positive, then Ψ◦Φ and Φ◦Ψ are in the cone. Duality for such “mapping cones”174

was investigated by Størmer and Skowronek cf.63,69,70.175

Lemma 4. The cone of PPT states in A1⊗A2 and the cone of decomposable operators are176

dual cones.177
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Proof. Let P denote the positive cone. It is well known that this cone is self-dual, i.e.

P∗ = P . Recall that Γ denotes the partial transpose map. Since Γ∗ = Γ, then PΓ is also

self-dual. Then

(P ∩ PΓ)∗ = P∗ + (PΓ)∗ = P + PΓ.

The set of PPT states is P ∩ PΓ, and the set of decomposable operators is P + PΓ, so the178

lemma follows.179

Størmer67 gave the following test for decomposability of a positive map and applied it to180

show the Choi map is not decomposable.181

Theorem 5. A positive map Φ : A1 → A2 is decomposable iff I ⊗ Φ maps PPT operators182

to positive operators.183

Proof. Assume ρ ∈ A1⊗A2 is PPT, and Φ ∈ L(A1,A2) is decomposable, say Φ = Φ1 +Φ2◦t184

with Φ1,Φ2 completely positive, then185

(I ⊗ Φ)ρ = (I ⊗ Φ1)ρ+ (I ⊗ Φ2)((I ⊗ t)(ρ)) ≥ 0. (2)

For the converse, see Ref. 67.186

Thus decomposable positive maps can’t detect entanglement of PPT entangled states.187

Similarly, if Q ≥ 0 and ρ is a PPT state, then 〈QΓ, ρ〉 = 〈Q, ρΓ〉 ≥ 0, so decomposable188

entanglement witnesses can’t detect entanglement of PPT states.189

Optimal entanglement witnesses190

For the sake of efficiency, one would like to use entanglement witnesses that detect as many191

entangled states as possible. If W is an entanglement witness, let DW = {ρ | tr(Wρ) < 0}192

denote the set of entangled states detected by W . Lewenstein et al.47 gave the following193

definition.194

Definition. An entanglement witness W is optimal if W detects a maximal set of entangled195

states, i.e., if DW ⊂ DW2 for an entanglement witness W2 implies W2 is a multiple of W .196

There are other notions of optimality, e.g., the notion of an nd-optimal entanglement197

witness defined in Ref. 47 that involves maximality of the set of entangled PPT states198

detected by an entanglement witness. This is not the same as an optimal entanglement199
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witness that happens to be indecomposable, as shown by Ha and Kye28, and the latter is200

what we will mean when we use the term indecomposable optimal entanglement witness.201

Lemma 6. (Ref. 47) Let W1,W2 be entanglement witnesses. If DW1 = DW2, then W1 is a202

multiple of W2.203

(The analogous statement for positive maps is not true. For example, transpose maps204

with respect to different orthonormal product bases each detect all entangled states on205

M2 ⊗M2.)206

If W1,W2 are entanglement witnesses with DW1 ⊂ DW2 and with W2 not a multiple of207

W1, we say W2 is finer than W1.208

Lemma 7. (Ref. 47) If W1,W2 are normalized entanglement witnesses such that W2 is finer209

than W1, then W1 = (1− ε)W2 + εP , for some 0 < ε < 1 and P ≥ 0.210

It follows that an entanglement witness W (not necessarily normalized) is optimal iff it211

cannot be written as a convex combination of an entanglement witness W2 and a positive212

(nonzero) operator. Equivalently W is optimal iff there is no positive operator P such that213

W − P is block positive.214

Definition. A positive map Φ that is not completely positive is optimal if the corresponding215

entanglement witness is optimal. (This is equivalent to there being no nonzero completely216

positive map Ψ with Φ ≥ Ψ.)217

Note that the set of states detected by an optimal positive map isn’t necessarily maximal218

among sets detected by positive maps. For example, if the reduction map detects entangle-219

ment of a state, then so does the transpose map, and in Mn⊗Mn for n ≥ 3 there are states220

detected by the transpose map but not by the reduction map, cf. Ref. 33. Thus the set of221

entangled states detected by the reduction map is a proper subset of the set of entangled222

states detected by the transpose map. However, both are optimal positive maps (as we will223

see later).224

We now discuss the close connection between optimality of entanglement witnesses and225

the facial structure of the cone of block positive operators (or of the compact convex set of226

normalized block positive operators), starting with extremal operators.227

Definition. BP is the cone of block positive operators on HA ⊗HB. We write BP1 for the228

compact convex set of normalized block positive operators.229
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Arguments involving the cone BP often can be rephrased in terms of the compact convex230

set BP1. There isn’t as natural a way to normalize positive maps.231

Definition. Let C be a cone in a real vector space V . A nonzero element x ∈ C is extremal232

if whenever x is written as a convex combination of x1, x2 ∈ C, then each of x1, x2 is a233

multiple of x. (We will define faces of convex sets later and see that x is extremal in a cone234

C iff the ray {λx | 0 ≤ λ ∈ R} is a face of C.)235

Definition. A block positive operator W is extremal if it is extremal in the cone BP . (This is236

equivalent to tr(W )−1W being an extreme point of the set BP1 of normalized block positive237

operators.)238

An extremal entanglement witness is defined to be an entanglement witness that is an239

extremal block positive operator.240

A positive map Φ ∈ L(A1,A2) is extremal if it is extremal in the cone of positive maps.241

This is equivalent to CΦ being extremal in the cone BP .242

Note that the set of block positive observables is convex, while the set of entanglement243

witnesses is not. For example, if P1, . . . , P4 are the four Bell states, then each P Γ
i is an244

entanglement witness. Then 1
4

∑
i P

Γ
i = 1

4
(I ⊗ I) is block positive but detects no entangled245

state, hence is not an entanglement witness.246

By definition every extremal entanglement witness is an extremal block positive opera-247

tor, but there are extremal block positive operators that are positive and thus detect no248

entangled states, hence are not entanglement witnesses. For example, if V ∈ L(HB, HA)249

and AdV (X) = V †XV , then AdV is a completely positive map that is extremal both among250

completely positive maps and among positive maps, see Thm. 3.5 in Ref. 70. Then the251

Choi-Jamio lkowski isomorphism carries AdV to an extremal positive operator in A1 ⊗ A2252

that is also an extremal block positive operator, but is not an entanglement witness.253

The following is one way to prove an entanglement witness is optimal.254

Lemma 8. If W is an extremal entanglement witness, then W is optimal.255

Proof. This follows at once from Lemma 7.256

257

The following property is one of the most common ways used to prove optimality.258
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Definition. For an entanglement witness W , let ZW be the set of product vectors x ⊗ y in259

HA ⊗ HB such that 〈W (x ⊗ y), x ⊗ y〉 = 0. An entanglement witness has the spanning260

property if the linear span of ZW is all of HA ⊗HB.261

Lemma 9. (Ref. 47) If an entanglement witness W has the spanning property, then W is262

optimal.263

Thus both the spanning property and extremality imply that an entanglement witness is264

optimal. These properties are independent. The indecomposable positive map described by265

Choi10,11 is extremal12 but doesn’t have the spanning property (see the papers of Korbicz,266

Almeida, Bae, and Lewenstein41, and of Kye46). On the other hand, examples are given by267

Ha and Kye28, and by Chruściński and Pytel14, of positive maps with the spanning property268

that are not extremal. Finally, there are examples of optimal entanglement witnesses that269

are nether extremal nor spanning. Positive maps in a family defined by Qi and Hou56 were270

shown to to be indecomposable optimal entanglement witnesses not having the spanning271

property in Ref. 57, and then some in that family were shown not to be extremal by Ha272

and Yu31.273

The two best known examples of optimal positive maps are the transpose map and the274

reduction map. Both are decomposable and both have been used in well known tests for275

separability via the positive maps criterion. It is straightforward to check that the transpose276

map is extremal among positive maps, and is not completely positive, hence is optimal. The277

reduction map is extremal if d = 2 but not for d > 2. It has the spanning property in all278

dimensions, see Ref. 14, hence is optimal.279

Remarkably, Augusiak, Tura, and Lewenstein2 showed that in M2⊗Mn, for a decompos-280

able entanglement witness W , the following are equivalent: (i) W is optimal (ii) W = QΓ
281

where the range of Q is completely entangled, i.e. has no product vectors (iii) W has the282

spanning property. So in particular optimality implies the spanning property in M2 ⊗Mn.283

(For 3×3 systems one needs to add to (ii) the assumption that the rank of Q is one or two.)284

Facial structure285

We have seen above that extremality implies optimality for entanglement witnesses, but286

is not necessary. Necessary and sufficient conditions for optimality can be given by making287

use of the facial structure of BP .288
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Definition. If K is a convex set, a convex subset F of K is a face of K if whenever a mixture289

(convex combination) tσ+ (1− t)τ is in F with σ, τ ∈ K, then σ, τ ∈ F . (In other words, F290

is a face if any line segment in K whose interior meets F is contained in F .) A proper face291

of K is a nonempty face that is not all of K.292

Thus extreme points of K are the faces of K that consist of a single point. If ρ ∈ K, then293

faceK(ρ) is the face of K consisting of all points on line segments whose interior contains ρ.294

This is the minimal face containing ρ in the sense that it is contained in any face of K that295

contains ρ. If C is a cone, then points W in C are extremal iff the ray {λW | 0 ≤ λ ∈ R}296

they generate is a face of C.297

If K is a compact convex set in a finite dimensional space, then the boundary of K is the298

union of the proper faces of K, and is the disjoint union of their relative interiors, cf. Thm.299

2.1.2 in Ref. 62. If F is a proper face of K then dimF < dimK. The face generated by300

ρ ∈ K will be all of K iff ρ is a (relative) interior point of K, and is a proper face of K iff ρ301

is a (relative) boundary point of K.302

Exposed faces303

Recall that function σ on a convex set is affine if σ preserves convex combinations:304

σ(tX + (1 − t)Y ) = tσ(X) + (1 − t)σ(Y ) for all X, Y in the convex set and for 0 ≤ t ≤ 1.305

A face F of a finite dimensional convex set K is said to be exposed if there is an affine306

functional on K which is nonnegative on K and whose zero set on K is F . (An exposed307

face of K can be visualized as the result of translating a hyperplane not meeting K until it308

first touches K; the intersection is an exposed face of K.)309

All faces of some convex sets are exposed, for example, all faces of polytopes are exposed,310

and all faces of the positive cone of Mn are exposed. (It has long been known that faces311

of the positive cone are the sets of the form FP = {ρ ≥ 0 | tr(ρP ) = 0} for projections312

P , see for example Refs. 3, 22, and 55). Therefore, some authors find it convenient to313

define “face” to be what we have called an exposed face. However, there are faces of convex314

sets of interest in quantum information that are not exposed. For example Eom and Kye23
315

showed that the nondecomposable positive map described by Choi11 is extremal but is not316

exposed in the cone of positive maps. A simple geometric illustration of a convex set with317

non-exposed extreme points is the convex hull of a circular disk and a point outside the318
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disk. Note that being exposed depends on the context: in the example just given, the two319

non-exposed points are exposed with respect to the facial line segment they belong to.320

Let V1, V2 be spaces with a pairing 〈·, ·〉, and let C be a closed cone in V1 with dual321

cone C∗ in V2. If E is a subset of the cone C, then we write E� = {Y ∈ C∗ | 〈X, Y 〉 =322

0 for all X ∈ E}. Then F ⊂ C is an exposed face of C iff F = F ��. For any subset E of C,323

E�� will be an exposed face of C, and will be contained in any exposed face that contains324

E. We write expface(E) for the minimal exposed face containing E, i.e. expface(E) = E��,325

and call expface(E) the exposed face generated by E.326

With slight abuse of language, a positive map is said to be exposed in the cone of positive327

maps if the ray generated by that map is an exposed face of the cone of positive maps.328

Similarly a block positive operator is said to be exposed if the ray generated by that witness329

is an exposed face of the cone BP of block positive operators. (This is equivalent to the330

normalized operator being an exposed point of the convex set BP1.)331

Optimality and facial structure332

We can rephrase Lemma 7 as follows.333

Lemma 10. An entanglement witness W is optimal iff faceBPW contains no positive ele-334

ments other than 0.335

Kye in Prop. 8.4 of Ref. 44 pointed out the following facial characterization of the336

spanning property.337

Lemma 11. An entanglement witness W ∈ Mm ⊗ Mn has the spanning property iff the338

exposed face of BP generated by W contains no positive operator.339

It follows that any exposed entanglement witness has the spanning property. Note that340

the partial transpose map Γ leaves invariant each of the cones of PPT, decomposable, and341

separable operators. Since Γ∗ = Γ, then Γ also leaves the cone of block positive operators342

invariant. Thus Γ is an affine automorphism of each of these cones, hence takes faces to faces343

and exposed faces to exposed faces. In particular, if W is an entanglement witness such that344

W Γ 6≥ 0, then W is extremal iff W Γ is extremal, and W is exposed iff W Γ is exposed. Thus345

if W is an indecomposable entanglement witness, these equivalences hold.346

The following result is a slight variation of Lemma 22 in Sarbicki60.347

15



Lemma 12. If W is an optimal entanglement witness, then every entanglement witness in348

faceBPW is optimal.349

Proof. If W is optimal by Lemma 10 faceBPW contains no nonzero P ≥ 0. Let W ′ ∈350

faceBPW , then faceBPW
′ ⊂ faceBPW so faceBPW

′ contains no nonzero positive operator.351

Thus by Lemma 10, W ′ is optimal.352

Similarly, if an entanglement witness W has the spanning property, every entanglement353

witness in the exposed face of BP generated by W also has the spanning property.354

From lemmas 10 and 12 it follows that the set of optimal entanglement witnesses is the355

union of the faces of BP that contain no positive nonzero operator, and all such faces are356

contained in the boundary of BP . However, there are operators on the boundary of BP that357

are not optimal.358

The following two results make more explicit a sense in which for detecting entanglement359

we can rely on optimal (or even extremal or exposed) entanglement witnesses.360

Corollary 13. (Refs. 16, 25, and 64) If ρ is an entangled state, then there is an extremal361

(hence optimal) entanglement witness that detects ρ. The witness can be chosen to be ex-362

posed.363

Proof. If W is an entanglement witness that detects ρ, we can assume without loss of gen-364

erality that W is normalized. We can express W as a convex combination of extreme points365

of BP1, operators, at least one of which must also detect ρ. By Strasziewicz’ Theorem58,366

the exposed points of a compact convex set are dense in the set of extreme points, so there367

is an exposed witness that detects ρ.368

Thus for purposes of entanglement detection, we could just work with extremal, even369

exposed, entanglement witnesses. Similarly, one could restrict detection by positive maps370

to exposed positive maps.371

Lewenstein et al.47 showed that every entanglement witness W can be optimized, i.e.,372

there is an optimal entanglement witness that is finer than W . In fact, that optimal entan-373

glement witness can be chosen to be extremal.374

Corollary 14. If W is a non-optimal entanglement witness, then there is an extremal (hence375

optimal) entanglement witness that is finer than W .376
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Proof. In Ref. 47 an algorithm is sketched to optimize an entanglement witness, i.e., to find377

an optimal entanglement witness that refines the given one. With slight modification, this378

gives an extremal entanglement witness. We sketch the idea.379

We may assume W is normalized, and show there is a normalized extremal entanglement380

witness that is finer than W . Note for a normalized entanglement witness extremality is381

the same as being an extreme point of BP1. We use induction on dim faceBP1 W . If this382

dimension is 0 then W is extremal, hence optimal, so there is nothing to prove. Suppose383

the corollary holds for dim faceBPW < k, and let W be a non-optimal entanglement witness384

with dim faceBPW = k.385

If W is not optimal, by Lemma 7 we can find P ≥ 0 and an entanglement witness W1

such that W is in the interior of the line segment [P,W1]. Since BP1 and faceBP1 W are

compact, the extension of this line segment must meet the (relative) boundary of faceBP1 ,

so we can choose W1 to be in this relative boundary, say with W = tW1 + (1 − t)P . Then

dim faceBP1 W1 < dim faceBP1 W . Now by the induction hypothesis there is an extremal

entanglement witness W ′ finer than W1, and thus there exists 0 < s < 1 and nonzero Q ≥ 0

such that W1 = sW ′ + (1− s)Q. Combining gives

W = tW1 + (1− t)P = t(sW ′ + (1− s)Q) + (1− t)P = tsW ′ + t(1− s)Q+ (1− t)P,

and then W ′ is finer than W .386

Examples of exposed positive maps and entanglement witnesses387

If V is a linear map from HB to HA, Størmer70 showed that the maps AdV and AdV ◦t388

are extremal positive maps. It was shown by Marciniak49 that such maps are exposed in the389

cone of positive maps.390

Theorem 15. If x is any unit vector in HA ⊗ HB, then the associated projection Px is391

exposed in the cone of block positive operators. Thus if x is entangled, then P Γ
x will be an392

exposed entanglement witness.393

Proof. We first show that Px = CAdV
for some V . Indeed, since Px is extremal in the cone of394

positive operators, then the corresponding map under the Choi-Jamio lkowski isomorphism395

is an extremal completely positive map, hence must be of the form CAdV
. By Marciniak’s396
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result, CAdV
is exposed not only in the cone of completely positive maps, but also in the full397

cone of positive maps. It follows that Px is exposed in the cone of block positive operators.398

The partial transpose map Γ is an affine isomorphism on the cone of block positive399

operators, so P Γ
x is also an exposed block positive operator. If x is entangled, we saw before400

that P Γ
x is an entanglement witness.401

402

Chruściński and Sarbicki16 developed a sufficient criterion for a positive map to be ex-403

posed, and then applied this in Ref. 17 to show the Breuer-Hall maps are exposed. In Ref.404

61 they showed that the Robertson map and some higher dimensional generalizations are405

exposed.406

Of course, exposed entanglement witnesses are also extremal, hence optimal. As the next407

result indicates, if W is exposed and indecomposable, the same is true of W Γ. Thus exposed408

entanglement witnesses are a rich source of optimal entanglement witnesses and optimal409

positive maps.410

Theorem 16. Let W be an exposed entanglement witness.411

(i) If W is decomposable, then W = P Γ
x for some entangled vector x.412

(ii) If W is indecomposable, then W Γ is also an exposed (indecomposable) entanglement413

witness.414

Proof. (i) Write W = P + QΓ where P,Q ≥ 0. Since W is an entanglement witness,then415

Q 6= 0. Since W is extremal then P = 0, so W = QΓ. Then W Γ = Q will also be extremal416

in BP , hence also extremal among positive operators. Thus Q = Px for some x. Then417

W = P Γ
x . Here since W is not positive, then x can’t be a product vector, hence is entangled.418

(ii) Since W is exposed, then W Γ also will be exposed in BP . Since W is by assumption419

indecomposable, then W Γ 6≥ 0, so W Γ is an entanglement witness.420

421

The structural physical approximation422

As discussed previously, by virtue of the positive maps criterion for separability, positive423

maps are able to detect all entangled states. However, it is only completely positive maps424

that are physically realizable.425
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This led P. Horodecki37, see also Ref. 38, to introduce the notion of the structural physical426

approximation of a positive map Φ, which is (up to a scalar multiple) a completely positive427

mixture of Φ and the completely depolarizing map, defined more precisely below. The idea is428

that on one hand SPA(Φ) can be physically implemented, and on the other hand it is closely429

related to Φ and hence can be used for many of the same purposes, including entanglement430

detection, as we will discuss later after defining the SPA.431

For a positive map Φ to be physically implementable it needs to be completely positive,432

but also can’t increase trace. However, the latter property can always be accomplished by433

scaling the operator, replacing Φ by λ−1Φ where λ is the maximum value of Φ(ρ) for states434

ρ. Hereafter we will assume this scaling has taken place, so that Φ is either trace preserving435

or trace non-increasing.436

Definition. The completely depolarizing map D : A1 → A2 is given by D(X) = tr(X)IB/dB437

where dB = tr IB. (In other words, the completely depolarizing map transforms every state438

on HA to the maximally mixed state on HB.)439

Definition. If Φ ∈ L(A1,A2) is a map that takes Hermitian operators to Hermitian operators,440

let t∗ be the minimum value of t such that (1 − t)Φ + tD is completely positive. (Since441

C(1−t)Φ+tD = (1 − t)CΦ + tCD = (1 − t)CΦ + tI ⊗ I/dB, such numbers t always exist.) We442

define SPA(Φ) = (1− t∗)Φ + t∗D.443

Since a positive map Φ is completely positive iff the associated entanglement witness444

CΦ is positive semi-definite, the following is the natural definition of the structural physical445

approximation for entanglement witnesses.446

Definition. If W is any Hermitian operator on HA⊗HB with trW = 1, let t∗ be the minimum447

value of t such that (1− t)W + tI ⊗ I/dAdB ≥ 0. The structural physical approximation of448

W is SPA(W ) = (1− t∗)W + t∗I ⊗ I/dAdB. If trW is nonzero but not equal to 1, we define449

SPA(W ) = SPA(W/ trW ).450

One reason for the choice of the completely depolarizing map in constructing the SPA of451

a positive map is that it can be interpreted as adding a minimal amount of “white noise”,452

cf. Ref. 41. Another virtue (discussed more in a moment) is that from SPA(Φ)(ρ) one can453

recover very useful information about Φ(ρ). Finally, for entanglement witnesses adding a454

multiple of the identity has readily identifiable effects on expectation values.455

For further motivation, following Horodecki and Ekert38 we illustrate how the structural
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physical approximation could be used in entanglement testing, and in particular how the

effects of mixing in the completely depolarizing map can be compensated for. To test

entanglement of a state ρ, we want to test whether (I⊗Φ)ρ ≥ 0 for a particular positive map

Φ. Let Ψ = I⊗Φ and let ρ be a state. Let SPA(Ψ) = (1−λ)Ψ+λD. Then to test positivity

of Ψ(ρ) we measure the spectrum of SPA(Ψ)(ρ) = ((1−λ)Ψ+λD)ρ = (1−λ)Ψ(ρ)+λIB/dB,

which is

spec(SPA(Ψ)(ρ)) = (1− λ) spec(Ψ(ρ)) + λ/dB.

Thus from the spectrum of SPA(Ψ)(ρ) and the scalar λ we can recover the spectrum of456

Ψ(ρ) = (I ⊗ Φ)ρ, and hence test if (I ⊗ Φ)ρ is positive.457

Since SPA(I⊗Φ) is completely positive, it can be implemented experimentally. Note that458

in this case we are making use of the SPA for a map I ⊗ Φ that is not necessarily positive.459

Here I ⊗ SPA(Φ) is not the same as SPA(I ⊗ Φ), and it is really the latter that provides a460

physically implementable test for entanglement.461

The SPA conjecture462

The notion of an entanglement breaking map was investigated by Horodecki, Shor, and463

Ruskai35.464

Definition. A positive map Φ : A1 → A2 is entanglement breaking if I ⊗Φ maps every state465

to a multiple of a separable state.466

This is equivalent to CΦ = (I ⊗ Φ)P+ being separable, cf. Ref. 35. Such maps are467

sometimes called superpositive maps, because of the property that when composed with any468

positive map, they remain completely positive.469

As shown in Ref. 35, trace preserving entanglement breaking maps can also be charac-

terized as those Φ which can be represented in Holevo form

Φ(ρ) =
∑
k

tr(Fkρ)ρk

where each Fk is positive and each ρk is a state and
∑

k Fk = I. This can be interpreted as a470

combination of a generalized measurement (corresponding to the Fk), followed by generating471

the state ρk if the measurement result was that associated with Fk. If Φ is trace non-472

increasing and entanglement breaking, then in this representation
∑

k Fk ≤ I, and one can473
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interpret this as a measurement where the state is discarded after the measurement if the474

outcome corresponds to none of the Fk.475

The following conjecture was posed by Korbicz et al.41.476

SPA Conjecture for positive maps If Φ : A1 → A2 is an optimal positive map, then477

SPA(Φ) is entanglement breaking.478

Here is the equivalent conjecture phrased in terms of entanglement witnesses.479

SPA Conjecture for entanglement witnesses If W is an optimal entanglement witness,480

then SPA(W ) is separable.481

One challenging part of investigating this conjecture is that in Mm ⊗Mn for mn > 6, no482

simple necessary and sufficient test of separability is known, other than for special families483

of states.484

EXAMPLES SUPPORTING THE SPA CONJECTURE485

The SPA conjecture when formulated by Korbicz et al.41 was supported by quite a few486

examples in the original article, and we’ll start by discussing some of those.487

Theorem 17. The SPA conjecture holds for positive maps Mm →Mn for mn ≤ 6.488

Proof. All positive maps Φ on Mm ⊗Mn with mn ≤ 6 are decomposable, so the associated489

entanglement witness W = CΦ will also be decomposable, say W = P + QΓ for P,Q ≥ 0.490

We may assume trW = 1. If W is optimal then P = 0. If SPA(W ) = (1− t)W + tI ⊗ I =491

(1− t)QΓ + tI ⊗ I, then SPA(W ) is PPT. In the given dimensions, as discussed previously,492

PPT implies separability, so SPA(W ) is separable.493

Korbicz et al. show that the transpose map and reduction map each satisfy the SPA494

conjecture. They also show partial transposition has an entanglement breaking SPA if495

dA ≥ dB. For M2⊗M2 the fact that SPA(I⊗ t) is entanglement breaking was proven earlier496

by Fiurásek24 (though not using that terminology).497

Theorem 18. (Ref. 1) If ψ ∈ Cm ⊗ Cn is entangled, and Pψ is the associated rank one498

projection, then W = P Γ
ψ is an optimal entanglement witness satisfying the SPA conjecture.499
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Proof. We have seen above that W is an exposed, hence extremal, hence optimal entan-500

glement witness. The authors show SPA(W ) is separable by expressing W as a convex501

combination of explicit product states.502

Korbicz et al. show various examples of indecomposable positive maps are optimal and503

satisfy the SPA conjecture. Their examples include the Choi map on M3, the Breuer-Hall504

family of maps on M2n, and certain entanglement witnesses and associated positive maps505

built from unextendable product bases.506

Chruściński and coauthors13–15,78 defined a variety of generalizations on M2n of the507

Robertson and Breuer-Hall maps and showed that these maps satisfy the SPA conjecture508

(including the Robertson map as a special case).509

The following family of maps, defined by Cho, Kye, and Lee7, generalize the Choi map.510

Definition. Let a, b, c be nonnegative real numbers. Then the generalized Choi map Φ[a, b, c] :511

M3 →M3 is defined by512

Φ[a, b, c](X) =


ax11 + bx22 + cx33 −x12 −x13

−x21 cx11 + ax22 + bx33 −x23

−x31 −x32 bx11 + cx22 + ax33

 (3)

where X = (xij).513

Here Φ[1, 0, µ] with µ ≥ 1 is the original Choi map, and Φ[0, 1, 1] is the reduction map514

on M3.515

Theorem 19. (Ref. 7)516

(i) Φ[a, b, c] is completely positive iff a ≥ 2 and copositive iff bc ≥ 1.517

(ii) Φ[a, b, c] is positive iff

a+ b+ c ≥ 2 and 0 ≤ a ≤ 1⇒ bc ≥ (1− a)2

(iii) Φ[a, b, c] is decomposable iff

0 ≤ a ≤ 2⇒ bc ≥
(

2− a
2

)2

The following results (i) of Ha and Kye25,26, and (ii) of Chruściński and Wudarski20
518

provided additional examples for the SPA conjecture was known to hold.519
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Theorem 20. Let 0 < a < 1, a+ b+ c = 2, bc = (1− a)2. Then520

(i) Φ[a, b, c] is an exposed (hence optimal) positive map and is indecomposable.521

(ii) If also 2b+ c ≤ 1 and 2c+ b ≤ 1, then SPA(Φ[a, b, c]) is entanglement breaking.522

Qi and Hou56 defined a generalization Φn,k of the Choi map to Mn for n ≥ 3. In Ref. 57523

they show for 1 ≤ k ≤ n− 1 with k 6= n/2 these maps are indecomposable and optimal and524

have entanglement breaking SPA.525

The Choi maps were generalized to indecomposable maps in higher dimensions by Tana-526

hashi and Tomiyama73 and Osaka51,52. Augusiak, Bae, Czekaj, and Lewenstein1 verified the527

SPA conjecture for these maps. They also formulated a version of the SPA conjecture for528

the continuous context, and verified the conjecture in some cases for that version of the SPA529

conjecture.530

Augusiak et al.1 also investigate variations on the structural positive approximation in-531

volving mixing the original map with the least needed proportion of an entanglement break-532

ing map other than the completely depolarizing map. They show that in some cases for533

optimal positive maps this does not give an entanglement breaking map, but that for every534

positive map there is at least one entanglement breaking map for which the associated SPA535

constructed with that EB map is entanglement breaking.536

In summary, a large variety of positive maps were found to satisfy the SPA conjecture.537

HA AND KYE’S DISPROOF OF THE SPA CONJECTURE538

To simplify some calculations in the next proof, the following variation of the SPA of an539

entanglement witness will be useful.540

Definition. Let W be any Hermitian operator on HA ⊗HB. If W 6≥ 0, we define λW to be541

the number such that −λW is the minimal negative eigenvalue of W . If W ≥ 0 we define542

λW = 0.543

Definition. If W is any Hermitian operator on HA⊗HB, we define SPA0(W ) = W+λW I⊗I.544

A straightforward calculation shows that SPA(W ) is a multiple of SPA0(W ). Note that

for any α > 0, since λαW = αλW , then

SPA0(αW ) = αW + λαW I ⊗ I = α(W + λW I ⊗ I) = α SPA0(W ).
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Since λW depends continuously on W , then SPA(W ) and SPA0(W ) are continuous functions545

of W .546

The following (with somewhat different notation and terminology) is a central observation547

of Ha and Kye29, and was stated later by Wang and Long75 in the form given here.548

Theorem 21. Let W be an observable (a Hermitian operator) on HA ⊗HB.549

(i) If λW < λWΓ, then SPA(W ) is not PPT.550

(ii) λW > λWΓ, then SPA(W Γ) is not PPT.551

(iii) If λW = λWΓ, then SPA(W ) and SPA(W Γ) are PPT, and SPA(W Γ) = SPA(W )Γ.552

Ha and Kye describe the conditions above by saying that an entanglement witness W is553

of positive type if λW ≤ λWΓ , of copositive type if λW ≥ λWΓ , and of PPT type if λW = λWΓ .554

Proof. (i) Suppose SPA(W ) is PPT. Then SPA0(W ) = W + λW I ⊗ I is PPT. Therefore555

W Γ + λW I ⊗ I ≥ 0, and so λWΓ ≤ λW . Thus if λW < λWΓ , then SPA(W ) is not PPT.556

(ii) This follows by replacing W by W Γ in (i).557

(iii) For all W by definition SPA(W ) ≥ 0, so SPA0(W ) ≥ 0. Since by assumption

λW = λWΓ , then

SPA0(W )Γ = (W + λW I ⊗ I)Γ = W Γ + λW I ⊗ I = W Γ + λWΓI ⊗ I = SPA0(W Γ) ≥ 0.

Now SPA(W Γ) = SPA(W )Γ follows.558

Thus if there is an optimal entanglement witness W such that (i) holds, then SPA(W )559

is not separable. If W is an entanglement witness with W Γ optimal and with (ii) holding,560

then SPA(W Γ) is not separable. In either case, this would disprove the SPA conjecture.561

Finally, if W and W Γ are both optimal entanglement witnesses such that λW 6= λWΓ ,562

then one or the other of W and W Γ would be counterexamples to the SPA conjecture. If563

(iii) holds for W , we know that SPA(W ) and SPA(W Γ) are PPT, but whether they are564

separable would remain unresolved.565

The family of generalized Choi maps Φ[a, b, c] defined by Cho, Kye, Lee, was generalized566

further by Ha and Kye27 to a family Φ[a, b, c, θ] described below. Then in Ref. 29 Ha and567

Kye find parameters such that Φ[a, b, c, θ] is an optimal positive map satisfying case (iii) of568

Theorem 21 (for W = CΦ[a,b,c,θ]). Then using previous results of Kye and Osaka45 they show569

that W [a, b, c, θ] is not separable, so Φ[a, b, c, θ] is not entanglement breaking, disproving the570

SPA conjecture. We now summarize their argument.571
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Definition. Let a, b, c be nonnegative real numbers, and −π ≤ θ ≤ π. Then the generalized

Choi map Φ[a, b, c, θ] : M3 →M3 is defined by

Φ[a, b, c, θ](X) =


ax11 + bx22 + cx33 −eiθx12 −e−iθx13

−e−iθx21 cx11 + ax22 + bx33 −eiθx23

−eiθx31 −e−iθx32 bx11 + cx22 + ax33


where X = (xij).572

Here is the Choi matrix for the Choi maps Φ[a, b, c, θ] (where for greater readability, zeros

are represented by dots):

W [a, b, c, θ] =



a · · · −eiθ · · · −e−iθ

· c · · · · · · ·

· · b · · · · · ·

· · · b · · · · ·

−e−iθ · · · a · · · −eiθ

· · · · · c · · ·

· · · · · · c · ·

· · · · · · · b ·

−eiθ · · · −e−iθ · · · a


The following parameter will play a key role in the results that follow. For −π ≤ θ ≤ π,

define

pθ = 2 max{cos(θ +
2

3
π), cos θ, cos(θ − 2

3
π)}

Note that 0 ≤ pθ ≤ 2, with pθ = 1 iff θ = ±π/3,±2π/3 and pθ = 2 iff θ = 0,±2π/3.573

Ha and Kye27 characterized positivity and complete positivity of these maps as described574

next.575

Theorem 22. Let Φ = Φ[a, b, c, θ] and W = CΦ.576

(i) Φ is completely positive (equivalently W is positive) iff a ≥ pθ, and W Γ is positive iff577

bc ≥ 1.578

(ii) Φ is a positive map (equivalently W is block positive) iff579

a+ b+ c ≥ pθ and a ≤ 1⇒ bc ≥ (1− a)2. (4)
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Proof. (i) W [a, b, c, θ] is the direct sum of a positive diagonal matrix and the matrix

Aθ =


a −eiθ −e−iθ

−e−iθ a −eiθ

−eiθ −e−iθ a


which is positive iff a ≥ pθ. The argument for W [a, b, c, θ]Γ is similar.580

(ii) As discussed earlier, a map Φ ∈ L(A1,A2) is positive iff CΦ is block positive, i.e., iff581

〈Cφ(x⊗ y), (x⊗ y)〉 ≥ 0 for all x, y. By appropriate choice of product vectors, the necessity582

of the conditions in (4) follows. Then a long computation shows CΦ is block positive if these583

conditions hold.584

585

Lemma 23. If W and W Γ are optimal entanglement witnesses, then W is indecomposable.586

Proof. If W is decomposable, we can write W = P + QΓ with P,Q ≥ 0. If W is optimal587

then P = 0, and if W Γ is optimal, then Q = 0. Thus if both W and W Γ are optimal, then588

W must be indecomposable.589

Ha and Kye characterized spanning properties for the generalized Choi maps, and gave590

sufficient conditions for them to be indecomposable and exposed.591

Theorem 24. (Thm. 4.1 of Ref. 27) Assume 1 < pθ < 2 and assume Φ = Φ[a, b, c, θ] is592

positive. Let W = CΦ[a,b,c,θ]. Then593

(i) W is spanning iff

0 ≤ a < 1, bc = (1− a2)

(ii) W Γ is spanning iff either

2− pθ ≤ a ≤ 1, bc = (1− a)2, a+ b+ c = pθ,

or

1 ≤ a ≤ pθ, bc = 0, a+ b+ c = pθ.

(iii) (Refs. 27 and 30) If

2− pθ ≤ a < 1, bc = (1− a)2, a+ b+ c = pθ

then Φ is indecomposable and Φ is exposed.594
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Proof. The fact that (i) or (ii) imply spanning is proven by explicitly finding vectors in ZW595

or ZWΓ respectively that span HA ⊗HB.596

(iii) The given assumptions are equivalent to the combination of (i) and (ii) and thus to597

W [a, b, c, θ] and W [a, b, c, θ]Γ both being spanning. Thus assuming (iii), both W and W Γ
598

are optimal. By Lemma 23, W is indecomposable.599

Now Ha and Kye29 can describe the SPA for these generalized Choi maps.600

Lemma 25. Up to a normalizing factor,

SPA(W [a, b, c, θ]) = W [pθ, pθ − a+ b, pθ − a+ c, θ].

Proof. Conveniently, it turns out adding a multiple of Im ⊗ In to W [a, b, c, θ] gives another601

member of the family (up to a scalar multiple). Let Wt = (1 − t)Im ⊗ In + tW . Then one602

easily checks that603

Wt[a, b, c, θ] = tW [
at
t
,
bt
t
,
ct
t
, θ], (5)

where at = 1 − t + ta, bt = 1 − t + tb, ct = 1 − t + tc. Using this and the requirement in604

Lemma 22 above for positivity of W [a, b, c, θ] gives the formula for the SPA.605

Kye and Osaka45 showed that a particular family of these generalized Choi maps have606

corresponding Choi matrices W [a, b, c, θ] that are PPT and entangled, as described in the607

next result.608

Theorem 26. Let b > 0, −π
3
< θ < π

3
, θ 6= 0. Then W [pθ, b, 1/b, θ] is entangled.609

Proof. Let W = W [pθ, b, 1/b, θ]. Kye and Osaka show that there is no product vector x⊗ y610

in the range of W such that x̄⊗ y is in the range of W Γ. Thus W fails the range criterion611

for separability, see Ref. 36.612

Combining the results above, Ha and Kye29 give a counterexample to the SPA conjecture.613

Theorem 27. Let W = W [a, b, c, θ].614

(i) If615

1 < pθ < 2, a+ b+ c ≥ pθ, 0 ≤ a < 1, bc = (1− a)2 (6)

then W is a indecomposable optimal entanglement witness.616
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(ii) λW = λWΓ iff SPA(W ) is PPT iff617

(pθ − a+ b)(pθ − a+ c) = 1. (7)

Then SPA(W )Γ = SPA(W Γ), and both SPA(W ) and SPA(W Γ) are PPT but not separable.618

(iii) For each choice of θ with θ 6= ±π/3,±π there is at least one choice of a, b, c such that619

(i) and (ii) hold, and thus there are examples of an indecomposable optimal entanglement620

witness whose SPA is PPT but not separable.621

Proof. (i) If (i) holds, then W is block positive by Theorem 22, and since a < 1 < pθ, then622

W is not positive. Thus W is an entanglement witness. It is spanning and hence optimal623

by Theorem 24, and indecomposable by Theorem 23.624

(ii) The authors use the conditions for positivity of W and W Γ from Theorem 22 and the625

formula (5) to characterize when λW = λWΓ . The remaining statements about SPA(W ) and626

SPA(W Γ) follow from Theorem 21. Then the authors apply the results of Kye and Osaka627

(Theorem 26 above) to show SPA(W ) is not entangled.628

(iii) The claim in (iii) follows from a calculation showing that the system of equalities629

and inequalities give by (6) and (7) and the additional requirement 2 − pθ < a, has one or630

two solutions for each θ.631

632

We remark that if the parameters a, b, c satisfy (6) but not (7), by Theorem 21 W and W Γ
633

are optimal indecomposable entanglement witnesses such that one or the other of SPA(W )634

and SPA(W Γ) is not PPT, providing additional examples that disprove the SPA conjecture.635

One such set of parameters is a = 2−pθ, b = c = 1−a, 1 < θ < 2. If pθ < 4/3 then SPA(W )636

is not separable, if pθ > 4/3, then SPA(W Γ) is not separable, and if pθ = 4/3 then SPA(W )637

and SPA(W Γ) are PPT but not separable.638

STØRMER’S DISPROOF OF THE SPA CONJECTURE639

Independently, in the same family of optimal entanglement witnesses defined and studied640

by Ha and Kye, Størmer by different methods proved that there is an entanglement witness641

that violates the SPA conjecture, and we will sketch Størmer’s proof. Størmer’s paper in642

Ref. 72 extends and simplifies some of his arguments from Ref. 71, and we have generally643

followed the approach in Ref. 72 in our summary here.644
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Recall that a unit vector x ∈ Cn ⊗ Cn is maximally entangled if there are orthonormal645

bases b1, . . . , bn and c1, . . . , cn such that x = 1√
n

∑n
i=1 bi ⊗ ci.646

Definition. If ρ ∈Mn ⊗Mn is Hermitian, we define

S(W ) = nmax{〈Wx, x〉 | x ∈ Cn ⊗ Cn is a maximally entangled unit vector}.

(This matches the definition of S(W ) in Ref. 72, which is slightly different than that in Ref.647

71.)648

Note that if W is a density matrix, then 0 ≤ S(W ) ≤ n, and S(W ) = n iff W is

a maximally entangled state. Without the scaling factor n, S(W ) has been called the

maximally entangled fraction of W . Since

‖Px −W‖2
2 = tr(Px − 2WPx +W 2) = 1− 2〈Wx, x〉+ tr(W 2)

then 〈Wx, x〉 is maximized for x the maximally entangled state closest to W , so S(W ) can649

be thought of as a measure of the distance from W to the set of maximally entangled states.650

It is readily verified that |S(W1) − S(W2)| ≤ n‖W1 −W2‖ for the operator norm, so S is651

continuous.652

Let f1, . . . , fn and g1, . . . , gn be orthonormal bases of Cn, and let Fij and Gkl be the653

corresponding systems of matrix units such that Fijfp = δjpfi and similarly for Gkl. The654

following gives a simple lower bound for S(W ) in terms of the matrix for W in the product655

basis {fi ⊗ gj}.656

Lemma 28. Let W =
∑

ijkl wij,klFij ⊗Gkl, and x = 1√
n

∑
i fi ⊗ gi. Then

〈Wx, x〉 =
1

n

∑
ij

wij,ij.

Størmer’s key tool71,72 is the following necessary criterion for separability.657

Theorem 29. If W is a separable density matrix in Mn ⊗Mn, then S(W ) ≤ 1.658

Proof. By a straightforward computation making use of Lemma 28, if W1, W2 are density659

matrices, and x is a maximally entangled unit vector, then 〈(W1 ⊗ W2)x, x〉 ≤ 1. Every660

separable state W is a convex combination of product states, so 〈Wx, x〉 ≤ 1. Now S(W ) ≤ 1661

follows.662
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Theorem 30. (Ref. 71 and 72) There are values of a, b, c, θ satisfying (6) for which W =663

W [a, b, c, θ] is an indecomposable optimal entanglement witness with SPA(W ) not separable.664

Proof. Choose sequences an → 1, θn → π, bn → 0, cn → 0 such that the parameters

an, bn, cn, θn satisfy the conditions in (6). (Explicit choices are described in Thm. 10 of Ref.

of 71.) Let Φn = Φ[an, bn, cn, θn]. Then for all n, Φn is an optimal positive map. Let

Wn =
1

3(an + bn + cn)
CΦn =

1

3(an + bn + cn)
W [an, bn, cn, θn].

Each Wn is a (normalized) indecomposable optimal entanglement witness.665

Note that lim Φn = I, and

lim
n
Wn =

1

3
CI =

1

3
P+.

(Recall 1
3
P+ = 1

3

∑3
i,j=1Eij ⊗ Eij is the projection onto the maximally entangled vector

Ψ+ = 1√
3

∑3
i=1 ei ⊗ ei, where e1, e2, e3 is the standard basis of C3.) By the continuity of S

and SPA

lim
n
S

(
SPA(Wn)

tr SPA(Wn)

)
= S

(
SPA(1

3
P+)

tr SPA(1
3
P+)

)
= S(

1

3
P+) = 3 > 1.

Thus for n sufficiently large, W̃n = SPA(Wn)
tr SPA(Wn)

is a density matrix with S(W̃n) > 1. Therefore666

by Theorem 29, for n sufficiently large, Wn is an indecomposable optimal entanglement667

witness whose SPA is not separable.668

We remark that in place of S(a), in the arguments above one could instead use S0(a) =669

n〈aψ+, ψ+〉 where ψ+ = 1√
n

∑n
i=1 ei ⊗ ei. Then one can explicitly calculate S0(W̃n) in terms670

of an, bn, cn, θn and the minimum eigenvalue of W̃n to find n and hence specific parameters671

an, bn, cn, θn such that S0(W̃n) > 1. Then S(W̃n) ≥ S0(W̃n) > 1 so SPA(Wn) is entangled.672

This is the approach in Ref. 71.673

CHRUŚIŃSKI-SARBICKI’S DECOMPOSABLE COUNTEREXAMPLE674

After the negative solution of the SPA conjecture with an indecomposable entanglement675

witness, attention turned to the question of whether an optimal entanglement witness that676

is decomposable would always have a separable SPA.677

By definition, a decomposable entanglement witness has the form W = P + QΓ, with678

P,Q ≥ 0. By Lemma 7, if W is optimal then P = 0, so W = QΓ. Furthermore, since679

30



SPA(QΓ) is a convex combination of QΓ and I ⊗ I/dAdB, its partial transpose is positive.680

Thus the SPA of a decomposable optimal entanglement witness will be PPT (and in dimen-681

sions 2× 2 or 2× 3 will then be separable).682

Chruściński and Sarbicki18 give an example of a decomposable optimal entanglement

witness in M3⊗M3 whose SPA is not separable. Their example has the form BΓ where B is

a convex combination of three Bell-like states of the family of nine such states on M3 ⊗M3

defined in Ref. 4. Let e1, e2, e3 be the standard basis of C3, and define

Ω10 =
1√
3

(e1 ⊗ e1 + ωe2 ⊗ e2 + ω̄e3 ⊗ e3),

Ω20 =
1√
3

(e1 ⊗ e1 + ω̄e2 ⊗ e2 + ωe3 ⊗ e3),

Ω11 =
1√
3

(ω̄e1 ⊗ e3 + e2 ⊗ e1 + ωe3 ⊗ e2),

where ω = e2πi/3 and ω̄ denotes the complex conjugate of ω.683

Let P10, P20, P11 be the corresponding projections, and for 0 ≤ γ ≤ 1 define

Bγ =
1− γ

2
P10 +

1− γ
2

P20 + γP11.

Then let

Wγ = 3BΓ
γ =



1− γ · · · · · · ωγ ·

· γ · −1−γ
2

· · · · ·

· · · · ω̄γ · −1−γ
2

· ·

· −1−γ
2

· · · · · · ω̄γ

· · ωγ · 1− γ · · · ·

· · · · · γ · −1−γ
2

·

· · −1−γ
2

· · · γ · ·

ω̄γ · · · · −1−γ
2

· · ·

· · · ωγ · · · · 1− γ


The authors observe that Wγ = 3BΓ

γ isn’t positive by observing it has a 3 × 3 direct684

summand with a negative eigenvalue. Thus Wγ is an entanglement witness. Then the685

authors give a direct proof that Wγ has the spanning property for all 0 < γ < 1, hence is686

optimal.687
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Theorem 31. (Ref. 18) For γ in an interval containing 3/4, Wγ is a decomposable optimal688

entanglement witness whose structural physical approximation is entangled.689

Proof. To find values of γ for which SPA(Wγ) is not separable, the authors make use of the690

realignment criterion. For a matrix ρ, Chen and Wu6 defined a “realigned” matrix R(ρ),691

and showed that if ρ is separable, then ‖ trR(ρ)‖1 = (tr(R(ρ)R(ρ)†))1/2 ≤ trR(ρ). (As they692

remark, their test is equivalent to Rudolph’s59 cross norm separability criterion.)693

If −λγ is the minimal eigenvalue of Wγ, let Qγ = Wγ + λγI ⊗ I = SPA0(Wγ). Here694

R(Qγ)R(Qγ)
† is a direct sum of three 3 x 3 submatrices, and Chruściński and Sarbicki find695

an explicit expression for trR(Qγ)R(Qγ)
† in terms of γ and λγ. They use this to show that696

for γ = 3/4, Qγ fails the realignment criterion, and thus is not separable. Thus SPA0(Wγ)697

and SPA(Wγ) are not separable. (They show numerically that the same conclusion holds698

for an range of values of γ around 3/4.) Thus the SPA conjecture also fails when restricted699

to decomposable entanglement witnesses.700

701

In conclusion, after many examples were found supporting the SPA conjecture, indecom-702

posable and decomposable families of counterexamples now have been found.703

Acknowledgement The author thanks Mary Beth Ruskai for a variety of suggestions that704

substantially improved this review.705
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13D. Chruściński and J. Pytel. Constructing optimal entanglement witnesses. II. witnessing733

entanglement in 4n x 4n systems. Physical Review A, 82(5), 2010.734

14D. Chruściński and J. Pytel. Optimal entanglement witnesses from generalized reduction735

and robertson maps. Journal of Physics A-Mathematical and Theoretical, 44(16), 2011.736
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