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s INTRODUCTION

s  Entanglement witnesses and positive maps are useful in detecting entanglement. For this
7 purpose, positive maps are generally a more powerful tool than individual entanglement
s witnesses. For example, the transpose map detects entanglement of all entangled states
oin My ® My or My ® Ms, while this is not the case for a single entanglement witness.
10 However, entanglement witnesses are observables, hence can be implemented physically,
1 while positive maps are not physically realizable unless they are completely positive. This
12 led P. Horodecki®", see also Ref. 38, to define the structural physical approximation (SPA)
13 of a positive map to be a completely positive map formed by mixing the original map with
14 as small an amount as possible of the completely depolarizing map. Mixing in the latter can
15 be thought of as adding a minimal amount of a neutral disturbance, whose effects can be
16 compensated for, since the completely depolarizing map takes every state to the maximally

17 mixed state.

15 Lewenstein, Kraus, Cirac, and Horodecki*” singled out those entanglement witnesses
19 that are the most efficient in detecting entanglement, and called them optimal entanglement
20 witnesses. Later Korbicz, Almeida, Bae, and Lewenstein*' conjectured that the SPA of an
21 optimal positive map would be entanglement breaking. Entanglement breaking maps have
2 a particularly simple form which makes them straightforward to implement. Examples have
23 been found by many investigators supporting this conjecture. Recently the conjecture was

21 settled in the negative direction.

55 In this review we will begin by discussing background relevant to the SPA conjecture.
2 We first review well known correspondences of linear maps from A; to A, with operators
7 in A; ® As. We then discuss basics regarding entanglement witnesses, and the notion of
s decomposability of positive maps and entanglement witnesses. Finally we discuss optimality

20 of entanglement witnesses, and the structural physical approximation of a positive map.

s  Then we state the structural physical approximation conjecture. We discuss the variety
s of examples found that support that conjecture. We then describe Ha and Kye’s example?®
» of an indecomposable entanglement witness that violates the SPA conjecture, and sketch
33 their proof. Independently, in the same family of optimal entanglement witnesses studied
1 by Ha and Kye, Stgrmer™ by different methods proved that there is a witness that violates

55 the SPA conjecture, which we also describe. Finally we discuss Chruscinski and Sarbicki’s



s example!'® of a decomposable entanglement witness that violates the conjecture.
s7 We refer the reader interested in further background on entanglement witnesses and
3 positive maps to the survey articles of Chruécinski and Sarbicki'®, of Kye**, and the book

39 of Stermer™.

s Notation

We begin by fixing some notation and reviewing basic terminology. Let H4 and Hpg
denote finite dimensional Hilbert spaces, let A; = L(H,4) denote the linear operators on
Hy, Ay = L(Hp), and let L(Ay, A3) be the set of linear maps from A; to Ay. We identify
Ay ® Ay with L(Ha ® Hg). We will often identify H4 with C™ and Hg with C", and denote
the standard basis of C™ by ey, ..., e,. When convenient, we will identify A; with M,, and
Ay with M,,. We view A;, Ay, and A; ® A, as Hilbert spaces with the Hilbert-Schmidt inner
product (X,Y) = tr(YTX), where { denotes the Hermitian adjoint (or complex conjugate

transpose as a matrix). For example, on 4; the Hermitian adjoint is given by
(Wa,y) = (x, WTy) for all 2,y € Hy.
Similarly, if ® € L(A;,.Ay) then the dual map ®* : A, — A; is the linear map satisfying
(X,9*(Y)) =(P(X),Y) for all X € A;,Y € A,

s The transpose maps on A;, As, and A; ® Ay will be denoted by t. We denote the partial
2 transpose map I ® t by I'. We note that t* =t and I'* =1T.

i3 A state on H is a positive (semi-definite) operator p in L(H) with trp = 1. An operator
w Aon Hy® Hpg is separable if it can be expressed as a finite sum A = )", B, ® C; with B; > 0
s and C; > 0. It follows that if p is a state on H4 ® Hp, then p is separable iff it is a convex
w combination of product states: p =) t;0; ® 7;. A state is entangled if it is not separable.
v A linear map ® : A; — A, is positive if ® takes positive semi-definite operators on H 4
s to positive semi-definite operators on Hg. A map ® € L(A;, Ay) is defined to be completely
a9 positive if I @  : My ® A1 — M, ® A, is positive for all k, where [, is the identity map
so on M. As pointed out by Kraus*?, a physical transformation of quantum systems should
s1 be completely positive, so such maps play a central role in quantum information theory.

If Ve L(Hg, Hy), we denote by Ady the map in L(A;,.Ay) given by
Ady(X) =VIXV.
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s2 It is clear that Ady is a positive map, and in fact is completely positive since I ® Ady =
s Adgy. Every completely positive map & is a sum of such maps, ® = >, Ady,. (This is
s« often called a Kraus decomposition of @, cf. Ref. 43. A proof can be found in Refs. 8 and
55 42.)

ss  Finally, we single out the following notion that will play an important role in our discus-

57 Slons.

ss Definition. An operator W in A; ® Ay is block positive if (W(zx ®@y),z®1y) > 0 for all x in
so Hp, yin Hp.

s Correspondence of linear maps and operators

s1  We review the Choi-Jamiotkowski isomorphism, which is an indispensable tool in working
s> with positive and completely positive maps. We denote by E;; the standard matrix units in

63 Mn, ie. Eij = 61‘6;.

Definition. If ® is a linear map from A; to Ay, then the Choi matrix Cg in A; ® As is
(%]

e If we define

P+:ZEij®Eij7 (1)
ij

s then %PJF is the pure state associated with the maximally entangled vector v, = \/%—n Y€ ® e,

6 and Cp = (I @ ®)P,, where [ is the identity on A;.

&7 The map that takes ® to Cs is readily seen to be a linear isomorphism from L(A;,.A5)
s t0 A; ® As, and is known as the Choi-Jamiotkowski isomorphism. It has the following
6o properties. (Property (i) is due to Jamiotkowski®® (who proved a slightly different but

70 equivalent version), while (ii) is due to Choi®).

7n Theorem 1. Let ® be a linear map from A; to A,.
2z (i) ® is positive iff Co is block positive.
(1) ® is completely positive iff Co is positive semi-definite.

7 For further discussion of this correspondence and related correspondences, see Refs. 48,

75 50, and 53.



7 Detecting entanglement

77 Entangled states are needed for most applications of quantum information theory, so it
78 is important to be able to detect whether a given state is entangled or separable. We now
70 review two means of entanglement detection: entanglement witnesses, and the positive maps

o criterion.

s1 Entanglement witnesses

s2  Two different necessary and sufficient conditions for separability were given by the
ss Horodeckis®*. For the first criterion, they applied the Hahn-Banach theorem to show that a
sa state p on Hy ® Hp is separable iff tr(pX) > 0 for all block positive X. Thus if p is a state
s and W is block positive with tr(Wp) < 0, then p is entangled, so the observable W has in
s effect detected the entanglement of p. This led Terhal™ to the following definition.

sz Definition. A block positive observable that detects entanglement of at least one state is an
ss entanglement witness. Thus an entanglement witness W on Hy ® Hp is a block positive
s operator that is not positive. We say W is normalized if tr W = 1. (As shown by Lewenstein

1‘47

o et al.*’ any nonzero block positive operator always has strictly positive trace, so we can

a always normalize a block positive operator.)

2 Theorem 2. (Ref. 3/) A state p on Hy @ Hg is entangled iff tr pW < 0 for some entan-

o3 glement witness W. Thus every entangled state can be detected by an entanglement witness.

u  Now we make use of the Choi-Jamiotkowski isomorphism. Note that if ¢ is a positive

map that is not completely positive, then Cg is block positive but not positive, so ® — Cg

©
5]

o is a 1-1 correspondence of positive maps that are not completely positive with entanglement

7 witnesses.

©

s For an example, let the flip operator V : C¢ @ C? — C? ® C? be the linear operator
o satisfying V(z ®@y) = y®x. Then (V(z®y), (r®y)) = [(z,y)|* > 0, so V is block positive.

©

w0 The flip operator is an entanglement witness that gives a necessary and sufficient condition

o

101 for detecting entanglement of the family of Werner states™.



w2 The positive maps criterion

s A simple but very useful criterion for separability was proposed by Peres®. Let t : Ay —
s A be the transpose map. If p is a separable state on Hy ® Hp, then (I ® t)p will also be
105 positive, and the property that p' = (I @ t)p > 0 is called the positive partial transpose
s (PPT) property. A positive operator with positive partial transpose is called a PPT operator,
w7 and in particular a state with positive partial transpose is called a PPT state.

s Earlier (before the notion of separability had been defined) Choi? raised the question of
w9 determining when an operator with the PPT property is a sum ) . A;® B; with A; > 0, B; >
o 0, and gave a 3 x 3 example where this is not the case.

m  The PPT criterion can be generalized by replacing the transpose map by any positive
w2 map. Let Ay = L(H,), Ay = L(Hp), A3 = L(H¢), and let & : A3 — A, be a positive map.
us (Typically Ho = Hy so A3 = Ay, or Ho = Hp so A3 = As.) If p is a separable state on
s Hy® Hp then (I ®®*)p > 0. If this fails for some positive map ® then p must be entangled.

115 Deﬁmtzon Let Al = L(HA), ./42 = L(HB>, Ag = L(Hc), and let ® : ./43 — .AQ be a
s positive map. If p is a state on Hy ® Hp and if (I ® ®*)(p) 2 0, then we say that ® detects

ur entanglement of p.

s The Horodeckis®* showed that every entangled state can be detected by a positive map,

ne by proving the following theorem.

120 Theorem 3. (Positive Maps Criterion) A state p on Ha® Hpg is separable iff for all positive
121 maps © : Ay — Az, (I @ P*)p > 0.

122 Using results on decomposability of positive maps (discussed in the next section) and the
123 positive maps criterion, the Horodeckis showed that the PPT property is a necessary and
124 sufficient condition for separability in My ® My, My ® M3, and M3 ® My, but is not sufficient
125 for M, ® M, with mn > 6, cf. Ref. 34.

139 showed that the PPT property implies sep-

s Horodecki, Smolin, Terhal, and Thapliya
127 arability for any state of rank two or less. Thus if x is an entangled unit vector and P, is
128 the corresponding projection, it follows that P, doesn’t have the PPT property. Therefore
1o PI' % 0, and since PX > 0 on separable states, each P! is an entanglement witness.

Let W be any entanglement witness in A; ® As, and ¢ : A; — Ay the positive map
such that W = Cg. Generally ® is a more powerful detector of entangled states than W in



the sense that it detects every state detected by W and perhaps many more. Indeed, if Cs

detects entanglement of a state p then
0> tr(Cop) = tr((I @ P)P)p = tr P((I @ D*)p),

130 so ¢ also detects entanglement of p. Furthermore, if X is any block positive operator then
wm Wy = (I @ )X is block positive, and all states detected by Wx are also detected by the
132 positive map ®. Thus ® detects all states detected by the family Wx as X ranges over block
133 positive operators.

134 Clearly the transpose map t : M,, — M, detects precisely the non-PPT states on M,, ®
s M,. For m = n = 2 the transpose map detects all entangled states, while this isn’t true for

136 the associated entanglement witness Cy = V' (where V' is the flip map V(z ® y) = y ® x).

137 Decomposability of positive maps and entanglement witnesses

s Definition. A positive map ® : Ay — A; is decomposable if it can be written in the form
13 P = & + $y ot where &1, P, are completely positive. An operator X € A; ® A; is
o decomposable if there are positive operators P, Q with X = P 4+ Q'.

11 From the definition of the Choi matrix, we have Ciopor = C. Thus Cp > 0 iff Ciogor > 0,
12 80 t o @ o t is completely positive iff ¢ is completely positive. Since ot =to (to P ot), it
13 follows that decomposable maps can also be described as those of the form ®; + ¢ o &, for
s O, Py completely positive.

Decomposable operators are precisely the operators associated with decomposable posi-

tive maps under the Choi-Jamiotkowski isomorphism. To see this observe that
Co,+t00, = Cp, + Croa, = Co, + CgQ.

ws By results of Woronowicz”” and Stgrmer%, if dim H, dim Hp < 6 all positive maps are

us decomposable, but this is not true in higher dimensions.

w Examples of decomposable and indecomposable maps

The transpose map t : My — My is a positive map which is evidently decomposable. The

reduction map R : My — M, given by
R(p) = (trp)I —p
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33 By the positive map criterion, if p is sep-

ug 1S a positive map defined by the Horodeckis
e arable then (I ® R)p > 0, and this is called the reduction criterion for separability. The
150 corresponding entanglement witness is Cgr = I ® [ — P,. Since Ok = I ® [ — V', where V
151 is the flip map, and I ® I — V > 0, then Cy is decomposable, and so the reduction map is
152 decomposable.

The first explicit example of an indecomposable positive map was the Choi map on M3,

defined by

T11 + purs3 —T12 —X13
P(X) = —Ta21 Too + X117 —To3
—T31 —T39 T33 + M2

This was shown by Choi and Lam'®? to be indecomposable (and extremal in the cone of

positive maps) by an argument involving the associated biquadratic form
F(z,y) = (®(zl)y,y) for 2,y € C™,

153 We will discuss in Theorem 5 below a more direct proof due to Stgrmer.

Breuer® and Hall*? independently defined what are now called the Breuer-Hall maps Ay,

on M, that generalize the reduction map. Let U be an antisymmetric unitary on C2¢. Then

i (p) = 57— ((trp)l = p = UP'TT),

15« and Breuer and Hall showed each map AY is positive and indecomposable.

In Ref. 66 Stgrmer considered unital projections (positive maps P of M, into itself
such that P? = P and P(I) = I), and described when they were completely positive or
decomposable. This was used by Robertson to create the first example of an indecomposable
positive map on M. He also showed that what is now called the Robertson map is extremal

in the cone of positive maps. The Robertson map & : My — M, is given by

T33 + Tyy 0 T13 + Ty2 T14 — T32
0 T33 + Taq Toz — Ta1 Toa + T31
P (z45) =

T31 + Tog T3z — T14 T11 + Tz 0

T4l — To3 T4z + T13 0 T11 + Ta2



155 Duality of cones

s Let V1, V4 be finite dimensional real vector spaces with a pairing (-, -) (i.e., a bilinear form

157 on Vi ® Vo such that (x,y) = 0 for all x € V; implies y = 0, and (z,y) = 0 for all y € V;

158 implies y = 0.) One example of such a pairing is (X,Y) = tr XY for X,Y Hermitian in

150 Ay ® Ag, which pairs the set of Hermitian operators (A; ® Ap);, with itself, and this will be
10 the pairing understood unless otherwise mentioned.

A nonempty subset C' of a real vector space V; is a cone if it is closed under multiplication

by nonnegative scalars, and under sums. If we have a non-degenerate pairing (-, -) of V; and

V5, and if C' is a cone in V] its dual cone is
C*={Y eV, | (X,Y)>0forall X € C}.

(This is the negative of the polar cone of C.) For a closed cone C, we have C** = C, and if

C1, Cy are closed cones,
(CiNCy)" =C1+ Cyand (C 4+ Cy)* =CT N CS.

11 We will see that duality of cones is useful in checking decomposability, and more generally
12 in working with positive maps and block positive maps.

13 If K is any convex subset of a real vector space, then the set of non-negative multiples of
164 elements of C'is a cone, called the cone generated by K. We will make frequent reference to
16s the cones generated by separable states and the cone generated by PPT states, and slightly
166 abusing language we will refer to these as the cone of separable states and the cone of PPT
167 states.

s By the definition of block positive operators, the dual of the cone of separable states is the
10 cone of block positive operators, and hence since the cone of separable states is closed, these
10 cones are dual cones of each other. Decomposable operators and the cone of PPT states also
1 are dual cones (see the next lemma). Fach cone C' of positive maps that corresponds under
12 the Choi-Jamiotkowski isomorphism to one of the cones of decomposable, PPT, separable,
173 positive, or block positive operators has the property that if ® is in the cone C', and ¥ is
17a completely positive, then Wo® and ¢ o ¥ are in the cone. Duality for such “mapping cones”

175 was investigated by Stgrmer and Skowronek cf.63.6%70,

s Lemma 4. The cone of PPT states in Ay ® Ay and the cone of decomposable operators are

177 dual cones.



Proof. Let P denote the positive cone. It is well known that this cone is self-dual, i.e.
P* = P. Recall that I denotes the partial transpose map. Since I'* = I, then P' is also
self-dual. Then

(PP =P+ (P =P+P".

17s The set of PPT states is P NP, and the set of decomposable operators is P + P', so the

179 lemma follows. O]

1w Stermer®” gave the following test for decomposability of a positive map and applied it to

11 show the Choi map is not decomposable.

12 Theorem 5. A positive map ® : Ay — Ay is decomposable iff [ @ ® maps PPT operators

183 0 positive operators.

18 Proof. Assume p € A;® A, is PPT, and ® € L(A;, As) is decomposable, say & = &1+ $y0t
15 with @, &5 completely positive, then

I@®)p=(I20)p+(I20)((I2t)(p)) > 0. (2)

186 For the converse, see Ref. 67. n

17 Thus decomposable positive maps can’t detect entanglement of PPT entangled states.
1es Similarly, if Q@ > 0 and p is a PPT state, then (Q', p) = (Q,p") > 0, so decomposable

189 entanglement witnesses can’t detect entanglement of PPT states.

1o Optimal entanglement witnesses

1 For the sake of efficiency, one would like to use entanglement witnesses that detect as many
102 entangled states as possible. If W is an entanglement witness, let Dy, = {p | tr(Wp) < 0}

1'47

103 denote the set of entangled states detected by W. Lewenstein et al.*" gave the following

104 definition.

105 Definition. An entanglement witness W is optimal if W detects a maximal set of entangled

s states, i.e., if Dy C Dy, for an entanglement witness Wy implies W is a multiple of .

17 There are other notions of optimality, e.g., the notion of an nd-optimal entanglement
108 witness defined in Ref. 47 that involves maximality of the set of entangled PPT states

199 detected by an entanglement witness. This is not the same as an optimal entanglement

10



200 witness that happens to be indecomposable, as shown by Ha and Kye?®, and the latter is

201 what we will mean when we use the term indecomposable optimal entanglement witness.

200 Lemma 6. (Ref. 47) Let Wy, Wy be entanglement witnesses. If Dy, = Dyw,, then W is a

203 multiple of W.

20 (The analogous statement for positive maps is not true. For example, transpose maps
20s With respect to different orthonormal product bases each detect all entangled states on
206 My ® Ms.)

200 If Wy, Wy are entanglement witnesses with Dy, C Dy, and with W5 not a multiple of

208 W1, we say Wy is finer than W;.

200 Lemma 7. (Ref. 47) If W1, Wy are normalized entanglement witnesses such that Wy is finer

20 than Wy, then Wy = (1 — €)Wy + €P, for some 0 < e <1 and P > 0.

a1 It follows that an entanglement witness W (not necessarily normalized) is optimal iff it
212 cannot be written as a convex combination of an entanglement witness W5 and a positive
213 (nonzero) operator. Equivalently W is optimal iff there is no positive operator P such that

2 W — P is block positive.

215 Definition. A positive map ® that is not completely positive is optimal if the corresponding
26 entanglement witness is optimal. (This is equivalent to there being no nonzero completely

217 positive map ¥ with & > U.)

28 Note that the set of states detected by an optimal positive map isn’t necessarily maximal
210 among sets detected by positive maps. For example, if the reduction map detects entangle-
220 ment of a state, then so does the transpose map, and in M,, ® M,, for n > 3 there are states
21 detected by the transpose map but not by the reduction map, cf. Ref. 33. Thus the set of
222 entangled states detected by the reduction map is a proper subset of the set of entangled
23 states detected by the transpose map. However, both are optimal positive maps (as we will
24 see later).

25  We now discuss the close connection between optimality of entanglement witnesses and
26 the facial structure of the cone of block positive operators (or of the compact convex set of

27 normalized block positive operators), starting with extremal operators.

28 Definition. BP is the cone of block positive operators on Hy ® Hg. We write BP; for the

220 compact convex set of normalized block positive operators.

11



20 Arguments involving the cone BP often can be rephrased in terms of the compact convex

a1 set BP1. There isn’t as natural a way to normalize positive maps.

22 Definition. Let C' be a cone in a real vector space V. A nonzero element = € C' is extremal
233 if whenever x is written as a convex combination of x1,25 € C, then each of z1,z5 is a

2 multiple of . (We will define faces of convex sets later and see that z is extremal in a cone

25 C'iff the ray {A\z | 0 < X\ € R} is a face of C.)

26 Definition. A block positive operator W is extremal if it is extremal in the cone BP. (This is
257 equivalent to tr(W)~'W being an extreme point of the set BP; of normalized block positive
238 Operators. )

20 An extremal entanglement witness is defined to be an entanglement witness that is an
20 extremal block positive operator.

21 A positive map ® € L(A;,.Ay) is extremal if it is extremal in the cone of positive maps.

22 This is equivalent to Cy being extremal in the cone BP.

a3 Note that the set of block positive observables is convex, while the set of entanglement
2 Witnesses is not. For example, if Py,..., Py are the four Bell states, then each P! is an
25 entanglement witness. Then }LZZ Pr = }l(l ® I) is block positive but detects no entangled
26 state, hence is not an entanglement witness.

27 By definition every extremal entanglement witness is an extremal block positive opera-
ug tor, but there are extremal block positive operators that are positive and thus detect no
20 entangled states, hence are not entanglement witnesses. For example, if V' € L(Hp, H,)
x0 and Ady (X) = VIXV, then Ady is a completely positive map that is extremal both among
21 completely positive maps and among positive maps, see Thm. 3.5 in Ref. 70. Then the
22 Choi-Jamiolkowski isomorphism carries Ady to an extremal positive operator in A; ® A,

23 that is also an extremal block positive operator, but is not an entanglement witness.

4 The following is one way to prove an entanglement witness is optimal.
s Lemma 8. If W is an extremal entanglement witness, then W is optimal.

6 Proof. This follows at once from Lemma 7.

257 D

s The following property is one of the most common ways used to prove optimality.

12
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260

Definition. For an entanglement witness W, let Zy, be the set of product vectors r ® y in

H, ® Hp such that (W(z ® y),z ® y) = 0. An entanglement witness has the spanning

61 property if the linear span of Zy, is all of H4 ® Hp.
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Lemma 9. (Ref. 47) If an entanglement witness W has the spanning property, then W is

optimal.

Thus both the spanning property and extremality imply that an entanglement witness is
optimal. These properties are independent. The indecomposable positive map described by
Choil®!! is extremal'? but doesn’t have the spanning property (see the papers of Korbicz,
Almeida, Bae, and Lewenstein*!, and of Kye®0). On the other hand, examples are given by
Ha and Kye?, and by Chruéciriski and Pytel**, of positive maps with the spanning property
that are not extremal. Finally, there are examples of optimal entanglement witnesses that
are nether extremal nor spanning. Positive maps in a family defined by Qi and Hou*® were
shown to to be indecomposable optimal entanglement witnesses not having the spanning
property in Ref. 57, and then some in that family were shown not to be extremal by Ha
and Yu?!.

The two best known examples of optimal positive maps are the transpose map and the
reduction map. Both are decomposable and both have been used in well known tests for
separability via the positive maps criterion. It is straightforward to check that the transpose
map is extremal among positive maps, and is not completely positive, hence is optimal. The
reduction map is extremal if d = 2 but not for d > 2. It has the spanning property in all
dimensions, see Ref. 14, hence is optimal.

Remarkably, Augusiak, Tura, and Lewenstein? showed that in M, ® M,,, for a decompos-
able entanglement witness W, the following are equivalent: (i) W is optimal (ii) W = Q"
where the range of ) is completely entangled, i.e. has no product vectors (iii) W has the
spanning property. So in particular optimality implies the spanning property in My ® M,,.

(For 3 x 3 systems one needs to add to (ii) the assumption that the rank of @ is one or two.)

Facial structure

We have seen above that extremality implies optimality for entanglement witnesses, but
is not necessary. Necessary and sufficient conditions for optimality can be given by making

use of the facial structure of BP.
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280 Definition. If K is a convex set, a convex subset F' of K is a face of K if whenever a mixture
200 (convex combination) to + (1 —¢)7 is in F with 0,7 € K, then 0,7 € F. (In other words, F
201 1s a face if any line segment in K whose interior meets F' is contained in F.) A proper face

202 of K is a nonempty face that is not all of K.

23 Thus extreme points of K are the faces of K that consist of a single point. If p € K, then
204 faceg (p) is the face of K consisting of all points on line segments whose interior contains p.
205 This is the minimal face containing p in the sense that it is contained in any face of K that
206 contains p. If C'is a cone, then points W in C' are extremal iff the ray {A\W | 0 < X\ € R}
207 they generate is a face of C.

s If K is a compact convex set in a finite dimensional space, then the boundary of K is the
209 Union of the proper faces of K, and is the disjoint union of their relative interiors, c¢f. Thm.
s0 2.1.2 in Ref. 62. If F' is a proper face of K then dim /' < dim K. The face generated by
s p € K will be all of K iff p is a (relative) interior point of K, and is a proper face of K iff p

w02 18 a (relative) boundary point of K.

w03 Kxposed faces

s Recall that function ¢ on a convex set is affine if ¢ preserves convex combinations:
05 0(tX + (1 —1)Y) = to(X) + (1 —t)o(Y) for all X,Y in the convex set and for 0 < ¢ < 1.
206 A face F' of a finite dimensional convex set K is said to be ezposed if there is an affine
307 functional on K which is nonnegative on K and whose zero set on K is F. (An exposed
s08 face of K can be visualized as the result of translating a hyperplane not meeting K until it
300 first touches K; the intersection is an exposed face of K.)

s All faces of some convex sets are exposed, for example, all faces of polytopes are exposed,
su and all faces of the positive cone of M, are exposed. (It has long been known that faces
a2 of the positive cone are the sets of the form Fp = {p > 0 | tr(pP) = 0} for projections
a3 P, see for example Refs. 3, 22, and 55). Therefore, some authors find it convenient to
s define “face” to be what we have called an exposed face. However, there are faces of convex
as sets of interest in quantum information that are not exposed. For example Eom and Kye?
s16 showed that the nondecomposable positive map described by Choi'! is extremal but is not
a7 exposed in the cone of positive maps. A simple geometric illustration of a convex set with

18 non-exposed extreme points is the convex hull of a circular disk and a point outside the
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a0 disk. Note that being exposed depends on the context: in the example just given, the two
20 non-exposed points are exposed with respect to the facial line segment they belong to.

= Let V4, V5 be spaces with a pairing (-,-), and let C' be a closed cone in V; with dual
22 cone C* in V. If E is a subset of the cone C, then we write E® = {Y € C* | (X,Y) =
23 0 for all X € E'}. Then F' C C'is an exposed face of C' iff ' = F°°. For any subset E of C,
24 E°° will be an exposed face of C', and will be contained in any exposed face that contains
»s F. We write expface(F) for the minimal exposed face containing F, i.e. expface(F) = E°°,
26 and call expface(E) the exposed face generated by E.

w27 With slight abuse of language, a positive map is said to be exposed in the cone of positive
18 maps if the ray generated by that map is an exposed face of the cone of positive maps.
»9 Similarly a block positive operator is said to be exposed if the ray generated by that witness
s 18 an exposed face of the cone BP of block positive operators. (This is equivalent to the

sn normalized operator being an exposed point of the convex set BP;.)

s2 Optimality and facial structure

;3 We can rephrase Lemma 7 as follows.

s Lemma 10. An entanglement witness W is optimal iff facegp W contains no positive ele-

s ments other than 0.

16 Kye in Prop. 8.4 of Ref. 44 pointed out the following facial characterization of the

337 spanning property.

13 Lemma 11. An entanglement witness W € M, ® M, has the spanning property iff the

330 exposed face of BP generated by W contains no positive operator.

s It follows that any exposed entanglement witness has the spanning property. Note that
s the partial transpose map I' leaves invariant each of the cones of PPT, decomposable, and
sz separable operators. Since I'* = I, then I also leaves the cone of block positive operators
s3 invariant. Thus I' is an affine automorphism of each of these cones, hence takes faces to faces
sa and exposed faces to exposed faces. In particular, if W is an entanglement witness such that
ss WT 20, then W is extremal iff W' is extremal, and W is exposed iff W7 is exposed. Thus
s if W is an indecomposable entanglement witness, these equivalences hold.

w7 The following result is a slight variation of Lemma 22 in Sarbicki®.
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us Lemma 12. If W is an optimal entanglement witness, then every entanglement witness in

a0 facegp W is optimal.

30 Proof. If W is optimal by Lemma 10 facegp W contains no nonzero P > 0. Let W' €
ss1 facegp W, then facegp W’ C facegp W so facegp W' contains no nonzero positive operator.

52 Thus by Lemma 10, W’ is optimal. O]

33 Similarly, if an entanglement witness W has the spanning property, every entanglement
s« witness in the exposed face of BP generated by W also has the spanning property.

35 From lemmas 10 and 12 it follows that the set of optimal entanglement witnesses is the
356 union of the faces of BP that contain no positive nonzero operator, and all such faces are
7 contained in the boundary of BP. However, there are operators on the boundary of BP that
358 are not optimal.

9 The following two results make more explicit a sense in which for detecting entanglement

30 we can rely on optimal (or even extremal or exposed) entanglement witnesses.

s Corollary 13. (Refs. 16, 25, and 04) If p is an entangled state, then there is an extremal
32 (hence optimal) entanglement witness that detects p. The witness can be chosen to be ex-

363 posed.

sa Proof. If W is an entanglement witness that detects p, we can assume without loss of gen-
s6s erality that W is normalized. We can express W as a convex combination of extreme points
s of BP1, operators, at least one of which must also detect p. By Strasziewicz’ Theorem?®,
37 the exposed points of a compact convex set are dense in the set of extreme points, so there

s 1S an exposed witness that detects p. O

w0 Thus for purposes of entanglement detection, we could just work with extremal, even
a0 exposed, entanglement witnesses. Similarly, one could restrict detection by positive maps
s to exposed positive maps.

s Lewenstein et al.*” showed that every entanglement witness W can be optimized, i.e.,
i3 there is an optimal entanglement witness that is finer than W. In fact, that optimal entan-

s glement witness can be chosen to be extremal.

ws Corollary 14. If W is a non-optimal entanglement witness, then there is an extremal (hence

w6 optimal) entanglement witness that is finer than W.
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si7 Proof. In Ref. 47 an algorithm is sketched to optimize an entanglement witness, i.e., to find
ss an optimal entanglement witness that refines the given one. With slight modification, this
9 gives an extremal entanglement witness. We sketch the idea.

0 We may assume W is normalized, and show there is a normalized extremal entanglement
ss1 witness that is finer than W. Note for a normalized entanglement witness extremality is
s2 the same as being an extreme point of BP;. We use induction on dim facegp, W. If this
3 dimension is 0 then W is extremal, hence optimal, so there is nothing to prove. Suppose
34 the corollary holds for dim facegp W < k, and let W be a non-optimal entanglement witness
s with dim facegp W = k.

If W is not optimal, by Lemma 7 we can find P > 0 and an entanglement witness W
such that W is in the interior of the line segment [P, W;]. Since BP; and facegp, W are
compact, the extension of this line segment must meet the (relative) boundary of facegp,,
so we can choose W to be in this relative boundary, say with W = tW; 4+ (1 — t)P. Then
dim facegp, W1 < dimfacegp, W. Now by the induction hypothesis there is an extremal
entanglement witness W’ finer than W7, and thus there exists 0 < s < 1 and nonzero ) > 0

such that Wy = sW’ 4 (1 — s)Q. Combining gives
W=tWi+(1—-tP=t(sW+(1-3s)Q)+(1—t)P=tsW' +t(1—3s)Q+ (1 —1)P,

386 and then W' is finer than W. 0

w7 Fxamples of exposed positive maps and entanglement witnesses

s If V is a linear map from Hp to H,, Stgrmer™ showed that the maps Ady and Ady ot
10 are extremal positive maps. It was shown by Marciniak®® that such maps are exposed in the

300 cone of positive maps.

s Theorem 15. If x is any unit vector in Hy ® Hpg, then the associated projection P, is
s exposed in the cone of block positive operators. Thus if x is entangled, then PL will be an

303 exposed entanglement witness.

304 Proof. We first show that P, = Caq, for some V. Indeed, since P, is extremal in the cone of
305 positive operators, then the corresponding map under the Choi-Jamiotkowski isomorphism

6 is an extremal completely positive map, hence must be of the form Cyq,. By Marciniak’s
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307 result, C'aq,, is exposed not only in the cone of completely positive maps, but also in the full
308 cone of positive maps. It follows that P, is exposed in the cone of block positive operators.
;9  The partial transpose map I' is an affine isomorphism on the cone of block positive
w0 Operators, so Pl is also an exposed block positive operator. If z is entangled, we saw before
w1 that Pl is an entanglement witness.

402 O

w3 Chruscinski and Sarbicki'® developed a sufficient criterion for a positive map to be ex-
s posed, and then applied this in Ref. 17 to show the Breuer-Hall maps are exposed. In Ref.
a5 61 they showed that the Robertson map and some higher dimensional generalizations are
a6 exposed.

w7 Of course, exposed entanglement witnesses are also extremal, hence optimal. As the next
w08 Tesult indicates, if W is exposed and indecomposable, the same is true of WT. Thus exposed
w0 entanglement witnesses are a rich source of optimal entanglement witnesses and optimal

410 Positive maps.

a1 Theorem 16. Let W be an exposed entanglement witness.

jurs

4

s
N

(i) If W is decomposable, then W = P for some entangled vector x.

as (1) If W is indecomposable, then WY is also an exposed (indecomposable) entanglement

s

414 Witness.

s

as Proof. (i) Write W = P 4+ QU where P,@Q > 0. Since W is an entanglement witness,then
a6 Q # 0. Since W is extremal then P = 0, so W = Q'. Then W' = @ will also be extremal
a7 in BP, hence also extremal among positive operators. Thus ) = P, for some x. Then
as W = PL. Here since W is not positive, then z can’t be a product vector, hence is entangled.

o (ii) Since W is exposed, then WT also will be exposed in BP. Since W is by assumption

4

s

4

N

o indecomposable, then W % 0, so W' is an entanglement witness.

222 The structural physical approximation

23 As discussed previously, by virtue of the positive maps criterion for separability, positive
20 maps are able to detect all entangled states. However, it is only completely positive maps

w5 that are physically realizable.
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w26 This led P. Horodecki®”, see also Ref. 38, to introduce the notion of the structural physical
s approximation of a positive map ®, which is (up to a scalar multiple) a completely positive
»28 mixture of ® and the completely depolarizing map, defined more precisely below. The idea is
9 that on one hand SPA(®) can be physically implemented, and on the other hand it is closely
a0 related to @ and hence can be used for many of the same purposes, including entanglement
a1 detection, as we will discuss later after defining the SPA.

a2 For a positive map ® to be physically implementable it needs to be completely positive,
33 but also can’t increase trace. However, the latter property can always be accomplished by
s scaling the operator, replacing ® by A\~1® where A is the maximum value of ®(p) for states
a5 p. Hereafter we will assume this scaling has taken place, so that ® is either trace preserving

a36 O trace non-increasing.

a1 Definition. The completely depolarizing map D : A; — A, is given by D(X) = tr(X)I/dp
18 where dg = tr Ig. (In other words, the completely depolarizing map transforms every state

a9 on Hy to the maximally mixed state on Hp.)

wo Definition. If & € L(A;, A) is a map that takes Hermitian operators to Hermitian operators,
s let t, be the minimum value of ¢ such that (1 — ¢)® + tD is completely positive. (Since
a2 C_poyip = (1 —t)Co +tCp = (1 — t)Cs + tI ® I /dp, such numbers ¢ always exist.) We
w3 define SPA(®) = (1 —t,)® + t.D.

wma  Since a positive map ® is completely positive iff the associated entanglement witness
us Cgp is positive semi-definite, the following is the natural definition of the structural physical

us approximation for entanglement witnesses.

aar Definition. If W is any Hermitian operator on H,® Hp with tr W = 1, let ¢, be the minimum
ws value of t such that (1 — )W +tI ® [/dadp > 0. The structural physical approzimation of
w9 Wis SPA(W) = (1 =t )W +t, I ® I/dadp. If tr W is nonzero but not equal to 1, we define
0 SPA(W) = SPA(W/tr W).

i1 One reason for the choice of the completely depolarizing map in constructing the SPA of
2 & positive map is that it can be interpreted as adding a minimal amount of “white noise”,
ss3 cf. Ref. 41. Another virtue (discussed more in a moment) is that from SPA(®)(p) one can
ss4 recover very useful information about ®(p). Finally, for entanglement witnesses adding a
55 multiple of the identity has readily identifiable effects on expectation values.

t38

For further motivation, following Horodecki and Ekert®® we illustrate how the structural

19



physical approximation could be used in entanglement testing, and in particular how the
effects of mixing in the completely depolarizing map can be compensated for. To test
entanglement of a state p, we want to test whether (/@®)p > 0 for a particular positive map
®. Let U = I®® and let p be a state. Let SPA(W) = (1— X)W+ AD. Then to test positivity
of ¥(p) we measure the spectrum of SPA(W)(p) = (1=AN)V+AD)p = (1-N)V(p)+Ap/dp,
which is

spec(SPA(¥)(p)) = (1 — X)spec(¥(p)) + A/dp.

ss6 Thus from the spectrum of SPA(V)(p) and the scalar A we can recover the spectrum of
51 U(p) = (I ® ®)p, and hence test if (I @ P)p is positive.

s Since SPA(I®®) is completely positive, it can be implemented experimentally. Note that
ss0 in this case we are making use of the SPA for a map I ® ® that is not necessarily positive.
a0 Here I @ SPA(®) is not the same as SPA(/ ® ®), and it is really the latter that provides a

w1 physically implementable test for entanglement.

w2 The SPA conjecture

w3 The notion of an entanglement breaking map was investigated by Horodecki, Shor, and

464 Ruskaig5.

ws Definition. A positive map @ : A; — A, is entanglement breaking if I @ ® maps every state

w6 t0 a multiple of a separable state.

s This is equivalent to Cy = (I ® ®)P, being separable, cf. Ref. 35. Such maps are
w8 sometimes called superpositive maps, because of the property that when composed with any
w0 positive map, they remain completely positive.

As shown in Ref. 35, trace preserving entanglement breaking maps can also be charac-

terized as those ® which can be represented in Holevo form
B(p) = tx(Fip)p
k

a0 where each Fj, is positive and each py, is a state and ), F}, = I. This can be interpreted as a
s combination of a generalized measurement (corresponding to the Fy), followed by generating
a2 the state p, if the measurement result was that associated with Fj. If ® is trace non-

a3 increasing and entanglement breaking, then in this representation » , Fy, < I, and one can
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ara interpret this as a measurement where the state is discarded after the measurement if the
a5 outcome corresponds to none of the Fj.
w6 The following conjecture was posed by Korbicz et al.*!.

w1 SPA Conjecture for positive maps If & : A; — A, is an optimal positive map, then

we SPA(®) is entanglement breaking.
a0 Here is the equivalent conjecture phrased in terms of entanglement witnesses.

10 SPA Conjecture for entanglement witnesses If W is an optimal entanglement witness,
s then SPA(W) is separable.

2 One challenging part of investigating this conjecture is that in M,, ® M,, for mn > 6, no
a3 simple necessary and sufficient test of separability is known, other than for special families

4 Of states.

s EXAMPLES SUPPORTING THE SPA CONJECTURE

ws  The SPA conjecture when formulated by Korbicz et al.! was supported by quite a few

w7 examples in the original article, and we’ll start by discussing some of those.
w8 Theorem 17. The SPA conjecture holds for positive maps M, — M, for mn < 6.

w0 Proof. All positive maps ® on M,, ® M, with mn < 6 are decomposable, so the associated
w0 entanglement witness W = Cgp will also be decomposable, say W = P + Q' for P,Q > 0.
s We may assume tr W = 1. If W is optimal then P = 0. If SPA(W) = (1 —-t)W +tI®@ [ =
w (1 —1)QV +tI ® I, then SPA(W) is PPT. In the given dimensions, as discussed previously,
w03 PPT implies separability, so SPA(TV) is separable. O

s Korbicz et al. show that the transpose map and reduction map each satisfy the SPA
a5 conjecture. They also show partial transposition has an entanglement breaking SPA if
w6 dg > dp. For My® M, the fact that SPA(I ®t) is entanglement breaking was proven earlier
w7 by Fiurdsek?* (though not using that terminology).

ws Theorem 18. (Ref. 1) If ¢ € C™ @ C" is entangled, and Py is the associated rank one

a9 projection, then W = P£ is an optimal entanglement witness satisfying the SPA conjecture.
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so0 Proof. We have seen above that W is an exposed, hence extremal, hence optimal entan-
so glement witness. The authors show SPA(W) is separable by expressing W as a convex

se2 combination of explicit product states. O

ss  Korbicz et al. show various examples of indecomposable positive maps are optimal and
soa satisfy the SPA conjecture. Their examples include the Choi map on Mj, the Breuer-Hall
sos family of maps on Ms,, and certain entanglement witnesses and associated positive maps
so6 built from unextendable product bases.

sr  Chruscinski and coauthors'® %™ defined a variety of generalizations on M, of the
sos Robertson and Breuer-Hall maps and showed that these maps satisfy the SPA conjecture
s00 (including the Robertson map as a special case).

s0  The following family of maps, defined by Cho, Kye, and Lee”, generalize the Choi map.

su Definition. Let a, b, ¢ be nonnegative real numbers. Then the generalized Choi map ®|a, b, ¢| :

512 M3 — M3 is defined by

aziy + bxgg + cs3 SEAD) —Zi3
q)[au b, C] (X> = —T21 cx11 + axoy + brss —T23 (3)
—I31 —T32 bZEH + CX99 + arss

s13 where X = (x;5).

s Here ®[1,0, x| with g > 1 is the original Choi map, and ®[0, 1,1] is the reduction map

515 OIl Mg.

sis Theorem 19. (Ref. 7)
sir (i) Pla, b, c] is completely positive iff a > 2 and copositive iff be > 1.
(11) ®[a, b, c| is positive iff

a+b+c>2and0<a<1=bc>(1—a)

(111) ®[a, b, c] is decomposable iff

2 —a\?
0<a<2=bc> 5

55 The following results (i) of Ha and Kye®>?% and (ii) of Chruscinski and Wudarski

s19 provided additional examples for the SPA conjecture was known to hold.
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s0 Theorem 20. Let 0 < a < 1l,a+b+c=2,bc=(1—a)?. Then
s (i) ®la,b,c] is an exposed (hence optimal) positive map and is indecomposable.

s (i1) If also 2b4+c¢ <1 and 2c+ b < 1, then SPA(®[a, b, c]) is entanglement breaking.

2 Qi and Hou®® defined a generalization ®™* of the Choi map to M, for n > 3. In Ref. 57
s they show for 1 <k <n —1 with k # n/2 these maps are indecomposable and optimal and
s»s have entanglement breaking SPA.

s The Choi maps were generalized to indecomposable maps in higher dimensions by Tana-
527 hashi and Tomiyama™ and Osaka®%2. Augusiak, Bae, Czekaj, and Lewenstein! verified the
s28 SPA conjecture for these maps. They also formulated a version of the SPA conjecture for
s20 the continuous context, and verified the conjecture in some cases for that version of the SPA
s30 conjecture.

s Augusiak et al.! also investigate variations on the structural positive approximation in-
s32 volving mixing the original map with the least needed proportion of an entanglement break-
s33 ing map other than the completely depolarizing map. They show that in some cases for
s3 optimal positive maps this does not give an entanglement breaking map, but that for every
535 positive map there is at least one entanglement breaking map for which the associated SPA
s36 constructed with that EB map is entanglement breaking.

s In summary, a large variety of positive maps were found to satisfy the SPA conjecture.

53 HA AND KYE’S DISPROOF OF THE SPA CONJECTURE

s To simplify some calculations in the next proof, the following variation of the SPA of an

ss0 entanglement witness will be useful.

sa Definition. Let W be any Hermitian operator on Hy4 ® Hg. If W 2 0, we define Ay to be
s22 the number such that —Ay is the minimal negative eigenvalue of W. If W > 0 we define

sa3 Ay = 0.
sa Definition. If W is any Hermitian operator on H,® Hp, we define SPAG(W) = W+ Ay I® 1.

A straightforward calculation shows that SPA (V) is a multiple of SPAG(W). Note that

for any « > 0, since Aoy = a\y, then

SPAo(aW) = aW + Aawl ® I = a(W + Ayl @ I) = a SPAG(W).
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ss5 Since Ay depends continuously on W, then SPA(W) and SPA(W) are continuous functions
sas Of W
sev The following (with somewhat different notation and terminology) is a central observation

s of Ha and Kye?”, and was stated later by Wang and Long™ in the form given here.

s90 Theorem 21. Let W be an observable (a Hermitian operator) on Hy ® Hp.

ss0 (1) If A\ < A\wr, then SPA(W) is not PPT.

s (i) A\w > Awr, then SPA(W?T) is not PPT.

o (11) If \w = A\, then SPA(W) and SPA(WTY) are PPT, and SPA(WT) = SPA(W)'.

553 Ha and Kye describe the conditions above by saying that an entanglement witness W is

ssa Of positive type if Ay < Ayr, of copositive type if A\yy > Ay, and of PPT type if Ay = Aypr.

sss Proof. (i) Suppose SPA(W) is PPT. Then SPAG(W) = W + Ayl ® I is PPT. Therefore
sss W + Al @1 >0, and so A\yr < Ay, Thus if Ay < A\yyr, then SPA(W) is not PPT.
ss7 (i) This follows by replacing W by W in (i).

(iii) For all W by definition SPA(W) > 0, so SPAy(W) > 0. Since by assumption

Aw = Ay, then
SPAG(W) = (W + Al @ D' =W + Al @1 = W' + A\yr I @ I = SPA,(W') > 0.
sss Now SPA(WT) = SPA(W)T follows. O

ss0  Thus if there is an optimal entanglement witness W such that (i) holds, then SPA (W)
se0 is not separable. If W is an entanglement witness with W' optimal and with (ii) holding,
se1 then SPA(W?T) is not separable. In either case, this would disprove the SPA conjecture.

s2  Finally, if W and W' are both optimal entanglement witnesses such that Ay # Apyr,
ses then one or the other of W and W' would be counterexamples to the SPA conjecture. If
ses (iii) holds for W, we know that SPA(W) and SPA(W?') are PPT, but whether they are
ses separable would remain unresolved.

s66  The family of generalized Choi maps ®[a, b, ¢| defined by Cho, Kye, Lee, was generalized
se7 further by Ha and Kye?” to a family ®[a, b, c, §] described below. Then in Ref. 29 Ha and
ses Kye find parameters such that ®[a,b, ¢, ] is an optimal positive map satisfying case (iii) of
se0o Theorem 21 (for W = C¢[a7b7c79]). Then using previous results of Kye and Osaka® they show
s that Wla, b, ¢, 0] is not separable, so ®[a, b, ¢, 0] is not entanglement breaking, disproving the

sn SPA conjecture. We now summarize their argument.
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Definition. Let a, b, ¢ be nonnegative real numbers, and —m < 6 < w. Then the generalized

Choi map ®|a, b, ¢, 0] : My — Mj is defined by

azyy + brag + cx3s —e114 —e g,
®la, b, c, 0](X) = —e 1y cT11 + axeg + b3z —e 3
—€i9$31 —6_201332 bxri1 + cxag + axss

sz where X = (x;5).

Here is the Choi matrix for the Choi maps ®|a, b, ¢, 8] (where for greater readability, zeros

are represented by dots):

a _eif it
c
b
- b
Wia,b,c,0] = | —e=® . . . ¢ . . . —¢i
c
c
- b
620 _e—iG a

The following parameter will play a key role in the results that follow. For —7 < 0 < 7,
define

2 2
pe = 2max{cos(d + §7r), cos @, cos(0 — §7r)}

s13 Note that 0 < pp < 2, with pp = 1 iff 6 = +7/3, +27/3 and py = 2 iff § = 0, £27/3.
s Ha and Kye?” characterized positivity and complete positivity of these maps as described

575 Next.

s,s Theorem 22. Let & = ®la, b, ¢, 0] and W = Cs.
s7 (i) © is completely positive (equivalently W is positive) iff a > pg, and W' is positive iff
s78 be Z 1.

sio (1) @ is a positive map (equivalently W is block positive) iff
a—l—b—l—chgandaglébcz(l—a)z. (4)
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Proof. (i) Wla,b,c,0] is the direct sum of a positive diagonal matrix and the matrix

a €i9 e—iﬁ
AO — _6—19 a _610
_626 _6710 a

ss0 which is positive iff @ > py. The argument for W{a, b, ¢, 0] is similar.

s (i) As discussed earlier, a map ® € L(A;, As) is positive iff Cg is block positive, i.e., iff
se2 (Cy(z @), (r®y)) > 0 for all z,y. By appropriate choice of product vectors, the necessity
se3 of the conditions in (4) follows. Then a long computation shows Cy is block positive if these
ss« conditions hold.

585 D
s Lemma 23. If W and W' are optimal entanglement witnesses, then W is indecomposable.

ss7 Proof. If W is decomposable, we can write W = P + Q' with P, > 0. If W is optimal
ses then P = 0, and if W' is optimal, then @Q = 0. Thus if both W and W' are optimal, then

ss0 VI must be indecomposable. O

s0o  Ha and Kye characterized spanning properties for the generalized Choi maps, and gave

so1 sufficient conditions for them to be indecomposable and exposed.

so Theorem 24. (Thm. 4.1 of Ref. 27) Assume 1 < py < 2 and assume ® = ®la, b, c, 0] is
so3 positive. Let W = Cgapc0. Then
(i) W is spanning iff
0<a<l, bec=(1-a?

(ii) WY is spanning iff either
2—pp<a<l, be=(1-a)’ a+b+c=npy,

or

1<a<py, bc=0, a+b+c=ps.

(1i1) (Refs. 27 and 30) If
2—pp<a<l, bc=(1—-a)? a+bt+c=npp

s then @ 1s indecomposable and ® is exposed.
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sos Proof. The fact that (i) or (ii) imply spanning is proven by explicitly finding vectors in Zy,
so6 OT Ly respectively that span Hq4 ® Hp.

o7 (iii) The given assumptions are equivalent to the combination of (i) and (ii) and thus to
sss Wla,b,c,0) and W/a,b,c,0]" both being spanning. Thus assuming (iii), both W and W%

se0 are optimal. By Lemma 23, W is indecomposable. O
so  Now Ha and Kye? can describe the SPA for these generalized Choi maps.

Lemma 25. Up to a normalizing factor,
SPA(WTla,b,c,0]) = W(pg,ps — a + b,pg — a + ¢, 0).

s Proof. Conveniently, it turns out adding a multiple of I,,, ® I,, to Wla, b, ¢, 0] gives another
s0o member of the family (up to a scalar multiple). Let W, = (1 — t)I,, ® I, + tW. Then one
s03 easily checks that
Q¢ bt Ct
Wt[a,b,c,e] :tW[77?7?70]7 (5)

sa Where ay = 1 —t+ta, by =1 —1t+tb, ¢, = 1 —t 4 tc. Using this and the requirement in
s0s Lemma 22 above for positivity of Wla, b, ¢, 0] gives the formula for the SPA. ]

s  Kye and Osaka®® showed that a particular family of these generalized Choi maps have
sor corresponding Choi matrices Wla, b, ¢, 0] that are PPT and entangled, as described in the

s08 Next result.
o Theorem 26. Let b >0, —% <0 < %, 0 #0. Then W(py,b,1/b,0] is entangled.

s10 Proof. Let W = W{pg, b, 1/b,0]. Kye and Osaka show that there is no product vector z ® y
s in the range of W such that T ® y is in the range of W'. Thus W fails the range criterion
s12 for separability, see Ref. 36. O]

ss  Combining the results above, Ha and Kye? give a counterexample to the SPA conjecture.

se Theorem 27. Let W = Wia, b, ¢, 0].

615 (Z)[f
l<py<2, a+b+c>py, 0<a<l, bec=(1-a) (6)

s16 then W is a indecomposable optimal entanglement witness.

27



(ii) M = Awr iff SPA(W) is PPT iff

6

-
3

(Po—a+b)(pp—a+c)=1 (7)

es  Then SPA(W)T' = SPA(W?T), and both SPA(W) and SPA(WT) are PPT but not separable.
0 (i11) For each choice of 0 with 6 # +m /3, £7 there is at least one choice of a,b, ¢ such that
620 (1) and (ii) hold, and thus there are examples of an indecomposable optimal entanglement

s21 witness whose SPA is PPT but not separable.

622 Proof. (i) If (i) holds, then W is block positive by Theorem 22, and since a < 1 < py, then
623 W is not positive. Thus W is an entanglement witness. It is spanning and hence optimal
62« by Theorem 24, and indecomposable by Theorem 23.

es (i) The authors use the conditions for positivity of W and W' from Theorem 22 and the
o2 formula (5) to characterize when Ay = Aypr. The remaining statements about SPA(W) and
27 SPA(WT) follow from Theorem 21. Then the authors apply the results of Kye and Osaka
62s (Theorem 26 above) to show SPA(W) is not entangled.

620  (iii) The claim in (iii) follows from a calculation showing that the system of equalities
s and inequalities give by (6) and (7) and the additional requirement 2 — py < @, has one or
s two solutions for each 6.

632 D

s We remark that if the parameters a, b, ¢ satisfy (6) but not (7), by Theorem 21 T and W*
s34 are optimal indecomposable entanglement witnesses such that one or the other of SPA(W)
e and SPA(WT) is not PPT, providing additional examples that disprove the SPA conjecture.
63 One such set of parametersisa =2—py, b=c=1—a,1 <0 < 2. If py < 4/3 then SPA(W)
67 is not separable, if py > 4/3, then SPA(WT) is not separable, and if py = 4/3 then SPA(W)
e3s and SPA(W?T) are PPT but not separable.

s0 STORMER’S DISPROOF OF THE SPA CONJECTURE

s0  Independently, in the same family of optimal entanglement witnesses defined and studied
sa1 by Ha and Kye, Stgrmer by different methods proved that there is an entanglement witness
s22 that violates the SPA conjecture, and we will sketch Stgrmer’s proof. Stgrmer’s paper in
3 Ref. 72 extends and simplifies some of his arguments from Ref. 71, and we have generally

sas followed the approach in Ref. 72 in our summary here.
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ss  Recall that a unit vector x € C" ® C" is maximally entangled if there are orthonormal

es6 bases by, ..., b, and cy,...,c, such that x = \/Lﬁ Yo i@

Definition. It p € M, ® M,, is Hermitian, we define
S(W) =nmax{(Wz,z) | x € C" ® C" is a maximally entangled unit vector}.

sr (This matches the definition of S(W) in Ref. 72, which is slightly different than that in Ref.
s T1.)

Note that if W is a density matrix, then 0 < S(W) < n, and S(W) = n iff W is
a maximally entangled state. Without the scaling factor n, S(W) has been called the

maximally entangled fraction of . Since
|Py — W3 =tr(P, —2WP, + W?) =1 —2(Wz, 2) + tr(W?)

sa0 then (Wz, x) is maximized for x the maximally entangled state closest to W, so S(W) can
ss0 be thought of as a measure of the distance from W to the set of maximally entangled states.
es1 It is readily verified that |S(W;) — S(Ws)| < n||W; — Ws|| for the operator norm, so S is
es2 continuous.

s Let fi,...,f, and g1,..., g, be orthonormal bases of C", and let Fj; and Gj; be the
sss corresponding systems of matrix units such that Fj;f, = 0;,f; and similarly for Gj;. The
ess following gives a simple lower bound for S(W) in terms of the matrix for W in the product

s basis {f; ® g;}.

Lemma 28. Let W = kal wijpFi; ® G, and x = f > [i®gi. Then

(Wa,x) E Wijij-

e Stormer’s key tool™ 72 is the following necessary criterion for separability.
s Theorem 29. If W is a separable density matriz in M, @ M, then S(W) < 1.

ss0 Proof. By a straightforward computation making use of Lemma 28, if Wy, W5 are density
se0 matrices, and x is a maximally entangled unit vector, then ((W; @ Wy)z,z) < 1. Every
ss1 separable state IV is a convex combination of product states, so (Wz,z) < 1. Now S(W) <1

662 fOHOWS. O
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s Theorem 30. (Ref. 71 and 72) There are values of a,b, c,0 satisfying (6) for which W =

ses Wla,b,c,0] is an indecomposable optimal entanglement witness with SPA(W') not separable.

Proof. Choose sequences a,, — 1, #, — =w, b, — 0, ¢, — 0 such that the parameters
Ay by, Cn, O, satisty the conditions in (6). (Explicit choices are described in Thm. 10 of Ref.
of 71.) Let ®,, = ®[ay,, by, ¢y, 0,,]. Then for all n, &, is an optimal positive map. Let

1 1
Wn = C. = w ) bn7 T en .
3(an + bp + ¢y) Pn 3(an + bn + ) o ¢ ]

s6s Flach W, is a (normalized) indecomposable optimal entanglement witness.

Note that lim ®,, = I, and

1 1
limW, = -C; = =P,.
n 3 '3t
(Recall 3P, = %Zij:l E;; ® E;; is the projection onto the maximally entangled vector

U, = \/Lg Z?:l e; @ e;, where ey, €5, e3 is the standard basis of C®.) By the continuity of S

and SPA
. SPA(W,,) SPA(LP,) 1
1 D) ) g 2 st ) g(op)=3> 1.
.5 <trSPA(Wn)> 5 (usm(%m) Sk =3>

SPA (W)
tr SPA(Wh)

o Thus for n sufficiently large, W, = is a density matrix with S(W,,) > 1. Therefore
s7 by Theorem 29, for n sufficiently large, W, is an indecomposable optimal entanglement

ses witness whose SPA is not separable. O]

o We remark that in place of S(a), in the arguments above one could instead use Sy(a) =
o0 n{atp,, ) where ¢, = \/Lﬁ Y, e ®e;. Then one can explicitly calculate SO(Wn) in terms
er1 Of a,, by, ¢y, 0, and the minimum eigenvalue of /V[7n to find n and hence specific parameters

672 Uy, by, Cp, 0, such that So(W,) > 1. Then S(W,) > So(W,,) > 1 so SPA(W,,) is entangled.
e73 This is the approach in Ref. 71.

e CHRUSINSKI-SARBICKI’S DECOMPOSABLE COUNTEREXAMPLE

ers  After the negative solution of the SPA conjecture with an indecomposable entanglement
76 Witness, attention turned to the question of whether an optimal entanglement witness that
77 is decomposable would always have a separable SPA.

e By definition, a decomposable entanglement witness has the form W = P + QU, with

oo P,QQ > 0. By Lemma 7, if W is optimal then P = 0, so W = Q'. Furthermore, since
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s SPA(QV) is a convex combination of QT and I ® I/dadp, its partial transpose is positive.

ss1 Thus the SPA of a decomposable optimal entanglement witness will be PPT (and in dimen-
682 sions 2 X 2 or 2 x 3 will then be separable).

Chruécinski and Sarbicki'® give an example of a decomposable optimal entanglement

witness in M3 ® Ms whose SPA is not separable. Their example has the form B! where B is

a convex combination of three Bell-like states of the family of nine such states on M3 ® M3

defined in Ref. 4. Let e, e, e3 be the standard basis of C?, and define

1 _

Qg = ﬁ<61 e +wes @ ex + wes® 63)7
1 _

Qg0 = —=(e1 @ €1 + Dey ® ey + wes @ e3),

&

1
QO = —(wel Kez+ e ®e +wez® 62)7

V3

27i/3 and @ denotes the complex conjugate of w.

683 wWhere w = e

Let Py, Py, P11 be the corresponding projections, and for 0 <~ < 1 define

1-— 1—
B,YZ 2’7P10+ 27P20+7P11'
Then let
1—’}/ wry
Y -5
@y -5
—F @y
W,=3B)=| . R
v -5
-5 v
@7 . . . . _I_T’y
w’)/ . . . . 1_f}/

s The authors observe that W, = 3]35 isn’t positive by observing it has a 3 x 3 direct
ess summand with a negative eigenvalue. Thus W, is an entanglement witness. Then the
sss authors give a direct proof that W, has the spanning property for all 0 < v < 1, hence is

687 optimal.
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s Theorem 31. (Ref. 18) For v in an interval containing 3/4, W, is a decomposable optimal

ss0 entanglement witness whose structural physical approrimation is entangled.

s Proof. To find values of  for which SPA(WV,) is not separable, the authors make use of the
eo1 Tealignment criterion. For a matrix p, Chen and Wu® defined a “realigned” matrix R(p),
e2 and showed that if p is separable, then || tr R(p)||; = (tr(R(p)R(p)!))/? < tr R(p). (As they
e0s remark, their test is equivalent to Rudolph’s® cross norm separability criterion.)

eoa  If —A, is the minimal eigenvalue of W, let Q, = W, + A\,] ® I = SPAy(W,). Here
es R(Q,)R(Q,)" is a direct sum of three 3 x 3 submatrices, and Chrusciniski and Sarbicki find
ss an explicit expression for tr R(Q,)R(Q-)" in terms of v and \,. They use this to show that
o7 for v = 3/4, @, fails the realignment criterion, and thus is not separable. Thus SPA(1V,)
o0s and SPA(W,) are not separable. (They show numerically that the same conclusion holds
s00 for an range of values of -y around 3/4.) Thus the SPA conjecture also fails when restricted
700 to decomposable entanglement witnesses.

701 D

72 In conclusion, after many examples were found supporting the SPA conjecture, indecom-

703 posable and decomposable families of counterexamples now have been found.

74 Acknowledgement The author thanks Mary Beth Ruskai for a variety of suggestions that

705 substantially improved this review.
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